

Maynooth University

National University of Ireland Maynooth

MATHEMATICAL PHYSICS

SEMESTER 2
 2018-2019

MP204
 Electricity and Magnetism

Dr. M. Haque, Prof. D. A. Johnston and Dr. J.-I. Skullerud

Time allowed: 2 hours
Answer ALL FOUR questions

1. A circular ring of radius R is placed in the $x-y$ plane, with its center at the origin $(0,0,0)$. The ring is uniformly charged, with linear charge density λ.

We will consider the electric field and electric potential due to this charged ring, at the point $(0,0, z)$ on the z axis, for varying z.
(a) For $z \gg R$, the z-component of the electric field is well-approximated by $E_{z}=\frac{\alpha}{z^{2}}$, where α is a constant. Explain physically why this is the case. From your explanation, express α in terms of λ and R.
[8 marks]
(b)

The z-component of the electric field at the point $(0,0, z)$ is shown in the plot, considering only positive values of z.
Explain physically why E_{z} vanishes at $z=0$.
Plot E_{z} against z from $z=-5 R$ to $z=+5 R$, i.e., extend the curve to the negative part of the z-axis.

[8 marks]
(c) Plot E_{x}, the x-component of the electric field at $(0,0, z)$, as a function of z.
[3 marks]
(d) Plot the electric potential at $(0,0, z)$, as a function of z.
2. Reminder: An infinitely long straight wire produces a magnetic field of strength $\mu_{0} I /(2 \pi d)$ at a point at distance d from the wire.
(a) Steady current I_{1} flows through an infinitely long straight wire running parallel to the z axis. The wire lies in the $x-z$ plane and intersects the x axis at the point $(-L, 0,0)$. The current flows from $z=-\infty$ to $z=+\infty$.
At the point $(2 L, 0,0)$ on the x-axis, find the magnitude of the magnetic field created by the current. Find also the $x-, y$-, and z components of the magnetic field at this point.
[9 marks]
(b) An infinite wire carrying current I_{2} runs along the y axis; the current flows from $y=-\infty$ to $y=+\infty$ through the origin. A rectangular loop lies in the $x-y$ plane, with the four corners having coordinates $(2 L, 0),(4 L, 0),(4 L, L)$, and $(2 L, L)$. Find the magnetic flux through the rectangular loop.
[16 marks]
3. (a) The magnetic field in some region is uniform: $\mathbf{B}=B_{0} \hat{k}$. At time $t=0$, a charged particle (mass m, charge q) is at the origin and has velocity

$$
\mathbf{v}=\alpha \hat{i}+w \hat{k}
$$

At which subsequent times does the particle cross the z axis?
What is the z coordinate of the particle position at these instants?
Hint: The trajectory of the particle is helical.
[12 marks]
(b) A long straight wire carries steady current I_{3}. The wire cross-section is circular and has radius R. The current density is uniform $\left(=\frac{I_{3}}{\pi R^{2}}\right)$ inside the wire. Using Ampere's law, calculate the magnetic field inside the wire, at distance r from the axis of the wire $(r<R)$. If you use an Amperean loop, explain its position clearly.
4. (a) In a region of free space, the electromagnetic fields are found to be

$$
\begin{array}{lll}
E_{x}=0 & E_{y}=E_{0} \sin (k x+\omega t) & E_{z}=0 \\
B_{x}=0 & B_{y}=0 & B_{z}=-B_{0} \sin (k x+\omega t)
\end{array}
$$

Use Maxwell's equations in free space to find how B_{0} is related to E_{0}, and how ω is related to k.
[12 marks]
(b) An electromagnetic field is described by the scalar potential V and vector potential \mathbf{A}, given by

$$
V=3 \alpha c^{2} x t, \quad \mathbf{A}=\alpha\left(c^{2} t^{2}-y^{2}\right) \hat{i},
$$

where α is a positive constant, and $c=1 / \sqrt{\mu_{0} \epsilon_{0}}$ is the speed of light. Find the electric and magnetic fields.
Also find the current density.
[13 marks]

Posssibly useful Equations

- Electrostatics: $\quad \mathbf{E}=-\nabla V ; \quad V_{P Q}=-\int_{Q}^{P} \mathbf{E} \cdot d \mathbf{l}$

Electric potential at \mathbf{r} due to a point charge q_{1} at $\mathbf{r}_{1}: \quad V=\frac{q_{1}}{4 \pi \epsilon_{0}} \frac{1}{\left|\mathbf{r}-\mathbf{r}_{1}\right|}$
Gauss' law: $\oint_{\Sigma} \mathbf{E} \cdot d \mathbf{S}=\frac{Q_{\text {enclosed }}}{\epsilon_{0}}$

- Magnetostatics: Ampere's law: $\int_{C} \mathbf{B} \cdot d \mathbf{l}=\mu_{0} I_{\text {enclosed }}$

Biot-Savart law: $\quad d \mathbf{B}=\left(\frac{\mu_{0} I}{4 \pi}\right) \frac{d \mathbf{l}^{\prime} \times\left(\widehat{\mathbf{r}-\mathbf{r}^{\prime}}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}}$

- Force on a charge: $\mathbf{F}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B}$

Magnetic force on a current element: $\quad d \mathbf{F}=I d \mathbf{l} \times \mathbf{B}$

- Fields from potentials: $\quad \mathbf{E}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t} \quad, \quad \mathbf{B}=\nabla \times \mathbf{A}$
- The continuity equation: $\nabla \cdot \mathbf{J}+\frac{\partial \rho}{\partial t}=0$
- Faraday's law: $\mathcal{E}=-\frac{d \Phi_{B}}{d t} \quad$ or $\quad \oint_{C} \mathbf{E} \cdot d \mathbf{l}=-\frac{d}{d t} \Phi_{B}=-\frac{d}{d t} \int_{\Sigma} \mathbf{B} \cdot d \mathbf{S}$
- Maxwell's Equations:
(1) $\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}$
(2) $\nabla \cdot \mathbf{B}=0$
(3) $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$
(4) $\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}=\mu_{0}\left(\mathbf{J}+\mathbf{J}_{\mathbf{D}}\right)$
- Poynting vector: $\mathbf{S}=\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B} \quad$ Speed of light: $c=1 / \sqrt{\mu_{0} \epsilon_{0}}$

Energy density of electromagnetic fields: $u=\frac{1}{2} \epsilon_{0} E^{2}+\frac{1}{2 \mu_{0}} B^{2}$

