

Maynooth University

National University of Ireland Maynooth

MATHEMATICAL PHYSICS

SEMESTER 2, REPEAT
2018-2019

MP204
 Electricity and Magnetism

Dr. M. Haque, Prof. D. A. Johnston and Dr. J.-I. Skullerud

Time allowed: 2 hours
Answer ALL FOUR questions

1. (a) Consider the static electric field $\mathbf{E}=\lambda x \hat{i}-3 \lambda L \hat{j}$.

Here λ and L are positive constants.
Find the electric potential difference $V_{Q P}$ between the point Q at $(0,4 L, 0)$ and the point P at $(0, L, 0)$.
Find the electric potential difference $V_{R P}$ between the point R at $(3 L, L, 0)$ and the point P at $(0, L, 0)$.
[10 marks]
(b) A thin rod of length L lies along the x axis with one end at $\left(-\frac{L}{2}, 0,0\right)$ and the other end at $\left(\frac{L}{2}, 0,0\right)$. The rod carries a uniformly distributed postive charge Q. Calculate the electric field at the point $\left(x_{0}, 0,0\right)$ on the x axis, with $x_{0}>L / 2$.
2. (a) The Biot-Savart law can be written as

$$
d \mathbf{B}=\left(\frac{\mu_{0} I}{4 \pi}\right) \frac{d \mathbf{l}^{\prime} \times\left(\widehat{\mathbf{r}-\mathbf{r}^{\prime}}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}}
$$

Explain what this equation expresses. Each quantity in the equation should be explained clearly.
Include an appropriate figure or figures, showing relevant vectors and/or distances. Indicate the direction of $d \mathbf{B}$ in your sketch.
[11 marks]
(b) A ring of wire with radius R is centered at the origin and lies on the $x-y$ plane, so that its axis coincides with the z-axis. Current I_{1} flows around this circular wire loop.
Using the Biot-Savart law, calculate the magnetic field at the center of the loop, i.e., at the origin.
[14 marks]
3. (a) The vector potential in some region is given by

$$
\mathbf{A}=\left(-\lambda \frac{z}{2}\right) \hat{j}+\left(\lambda \frac{y}{2}\right) \hat{k}
$$

Find the magnetic field \mathbf{B}.
Consider adding ∇f to the vector potential, where f is any scalar function. Explain how the magnetic field changes due to this transformation.

[8 marks]

(b) A long solenoid has n turns per unit length and radius R. It carries time-varying current $I(t)=I_{0} \sin (\omega t)$. Use Faraday's law in integral form to calculate the induced electric field as a function of the distance r from the axis of the solenoid, at a point outside the solenoid $(r>R)$. Reminder: A current I through a solenoid creates a magnetic field $\mu_{0} n I$ inside the solenoid, where n is the number of turns per unit length.
[17 marks]
4. (a) The magnetic field in a region changes with time, $\mathbf{B}=B_{0} e^{-2 t / t_{0}} \hat{i}$. Here B_{0} and t_{0} are positive constants. We consider two square loops, which we call Γ_{1} and Γ_{2}.
Γ_{1} lies in the $y-z$ plane, and has sides of length L_{1}. Find the electromotive force (EMF) induced in this loop.
The other square loop, Γ_{2}, lies in the $x-y$ plane, and has sides of length L_{2}. Find the EMF induced in Γ_{2}.
[10 marks]
(b) Consider an electromagnetic wave travelling through empty space described by the electric and magnetic fields

$$
\mathbf{E}=4 V_{0} L \cos \left(\frac{1}{L}(y-c t)\right) \hat{k}, \quad \mathbf{B}=\mathbf{G} \cos \left(\frac{1}{L}(y-c t)\right)
$$

where V_{0} and L are positive constants and \mathbf{G} is a constant vector. Using Maxwell's equations in free space, find the constant vector \mathbf{G}. In which direction is the electromagnetic wave propagating?
[10 marks]
(c) A magnetic field of $\mathbf{B}=a \sin (b y) e^{b x} \hat{k}$ is produced by a steady electric current. What is the density of that current?

Posssibly useful Equations

- Electrostatics: $\quad \mathbf{E}=-\nabla V ; \quad V_{P Q}=-\int_{Q}^{P} \mathbf{E} \cdot d \mathbf{l}$

Electric potential at \mathbf{r} due to a point charge q_{1} at $\mathbf{r}_{1}: \quad V=\frac{q_{1}}{4 \pi \epsilon_{0}} \frac{1}{\left|\mathbf{r}-\mathbf{r}_{1}\right|}$
Gauss' law: $\oint_{\Sigma} \mathbf{E} \cdot d \mathbf{S}=\frac{Q_{\text {enclosed }}}{\epsilon_{0}}$

- Magnetostatics: Ampere's law: $\int_{C} \mathbf{B} \cdot d \mathbf{l}=\mu_{0} I_{\text {enclosed }}$

Biot-Savart law: $\quad d \mathbf{B}=\left(\frac{\mu_{0} I}{4 \pi}\right) \frac{d \mathbf{l}^{\prime} \times\left(\widehat{\mathbf{r}-\mathbf{r}^{\prime}}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{2}}$

- Force on a charge: $\mathbf{F}=q \mathbf{E}+q \mathbf{v} \times \mathbf{B}$

Magnetic force on a current element: $\quad d \mathbf{F}=I d \mathbf{l} \times \mathbf{B}$

- Fields from potentials: $\quad \mathbf{E}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t} \quad, \quad \mathbf{B}=\nabla \times \mathbf{A}$
- The continuity equation: $\nabla \cdot \mathbf{J}+\frac{\partial \rho}{\partial t}=0$
- Faraday's law: $\mathcal{E}=-\frac{d \Phi_{B}}{d t} \quad$ or $\quad \oint_{C} \mathbf{E} \cdot d \mathbf{l}=-\frac{d}{d t} \Phi_{B}=-\frac{d}{d t} \int_{\Sigma} \mathbf{B} \cdot d \mathbf{S}$
- Maxwell's Equations:
(1) $\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}$
(2) $\nabla \cdot \mathbf{B}=0$
(3) $\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$
(4) $\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\mu_{0} \epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}=\mu_{0}\left(\mathbf{J}+\mathbf{J}_{\mathbf{D}}\right)$
- Poynting vector: $\mathbf{S}=\frac{1}{\mu_{0}} \mathbf{E} \times \mathbf{B} \quad$ Speed of light: $c=1 / \sqrt{\mu_{0} \epsilon_{0}}$

Energy density of electromagnetic fields: $u=\frac{1}{2} \epsilon_{0} E^{2}+\frac{1}{2 \mu_{0}} B^{2}$

