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Some partial solutions and/or hints are provided here.

Not carefully proofread and possibly incomplete — please use responsibly.

−−−−−−−−−−−−− ?−−−−−−−−−−−−

1. Divergence of curl:

(a) Using Cartesian coordinates, show that the divergence of the curl of
any vector v is zero.

(Partial) Solution/Hint →

∇·(∇×A) = ∇·

[(
∂Az
∂y
− ∂Ay

∂z

)
î+

(
∂Ax
∂z
− ∂Az

∂x

)
ĵ +

(
∂Ay
∂x
− ∂Ax

∂y

)
k̂

]

=
∂

∂x

(
∂Az
∂y
− ∂Ay

∂z

)
+

∂

∂y

(
∂Ax
∂z
− ∂Az

∂x

)
+

∂

∂z

(
∂Ay
∂x
− ∂Ax

∂y

)

=

(
∂2Ax
∂y∂z

− ∂2Ax
∂z∂y

)
+

(
∂2Ay
∂z∂x

− ∂2Ay
∂x∂z

)
+

(
∂2Az
∂x∂y

− ∂2Az
∂y∂x

)
= 0

— —

(b) Maxwell’s fourth equation is: ∇×B = µ0J + µ0ε0
∂E

∂t
.

The divergence of the left side is zero; therefore the right side also needs
to have zero divergence. Show that the divergence of the right side is
indeed zero. You will need to use the continuity equation and Maxwell’s
first equation. Point out clearly the steps where you use these.

(Partial) Solution/Hint →

The divergence of the right hand side:

∇ ·
(
µ0J + µ0ε0

∂E

∂t

)
= µ0∇ · J + µ0ε0

∂

∂t
(∇ · E)

= µ0∇ · J + µ0ε0
∂

∂t

(
ρ

ε0

)
used Maxwell’s first equation

= µ0

(
∇ · J +

∂ρ

∂t

)
= µ0 × 0 used the continuity equation

= 0
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— —

2. Steady current I flows through an infinitely long straight wire placed along
the z azis, from z = −∞ to z = +∞ through the origin.

We will use cylindrical coordinates, (r, φ, z), in this problem. The unit
vectors are denoted as r̂, φ̂, ẑ. (They are often denoted as er, eφ, ez.) You
will need to recall or learn what these coordinates and unit vectors mean.
Note that the directions of the r̂ and φ̂ vectors depend on the angle φ.

(a) Write down an expression for the magnetic field vector B created by
the current I at point (r, φ, z). This should be a vector equation. What
are the components Br, Bφ and Bz?

(Partial) Solution/Hint →

A 3D situation!! As always, solving such problems will only work if
you sketch figures showing various directions and distances. It’s best
to draw the situation from a couple of different perspectives (top view,
side view, view of the x-y plane, etc.) — this is useful for building a
complete mental picture of the situation.

If you sketch the situation showing directions of r̂, φ̂, ẑ and the direction
of B, you should see that B points in the same direction as the unit
vector φ̂. Also, the perpendicular distance from the point (r, φ, z) to
the wire is exactly r, so that the magnitude of the current at this point
is exactly µ0I/(2πr). Hence

B =
µ0I

2πr
φ̂

The components are

Br = 0 ; Bφ =
µ0I

2πr
; Bz = 0

— —
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(b) Use your expression for B to calculate the vector potential A. You
might need to recall that the curl of a vector v in cylindrical coordinates
is

∇×v =

(
1

r

∂vz
∂φ
− ∂vφ

∂z

)
r̂ +

(
∂vr
∂z
− ∂vz

∂r

)
φ̂ +

1

r

(
∂(rvφ)

∂r
− ∂vr
∂φ

)
ẑ

Also, you can assume that A has no z-dependence, which would be
consistent with the symmetry of the problem.

(Partial) Solution/Hint →

B = ∇×A only has a component in the φ̂ direction.

Bφ =

(
∂Ar
∂z
− ∂Az

∂r

)
Since there is no z-dependence, the term with the z-derivative must
vanish. Hence

Bφ = − dAz
dr

=⇒ Az = −
∫
Bφdr = − µ0I

2π

∫
dr

r
= − µ0I

2π
ln r

Thus

A = −
(
µ0I

2π
ln r

)
ẑ

Note that there might be an arbitrary constant of integration added.

— —
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3. We consider now a thick wire, of circular cross-section, with radius R. The
wire is infinitely long, and its axis is placed along the z azis. Steady current
I flows through the wire from z = −∞ to z = +∞. We will continue to use
cylindrical coordinates.

First consider the current I to be uniformly distributed over the circular
cross-section, so that the current density is

J =

(
I

πR2

)
ẑ for r≤R and J = 0 for r > R

In class, we used Amperean loops to show that the magnetic field is

B =

(
µ0I

2π

r

R2

)
φ̂ for r≤R and B =

(
µ0I

2π

1

r

)
φ̂ for r > R

(a) Show that Ampere’s law in differential form (∇×B = µ0J) is satisfied
outside the wire (r > R). Use cylindrical coordinates.

(Partial) Solution/Hint →

Using B =

(
µ0I

2π

1

r

)
φ̂ and the expression for the curl in cylindrical

coordinates, we obtain

∇×B = − ∂vφ
∂z

r̂ +
1

r

∂(rvφ)

∂r
ẑ = − 0r̂ +

1

r

∂

∂r
(µ0I/2π)ẑ = 0

Since the current density is also zero outside the cylinder, Ampere’s
law in differential form (∇×B = µ0J) is satisfied.

— —

(b) Show that Ampere’s law in differential form is satisfied inside the wire
(r < R). Use cylindrical coordinates.

(Partial) Solution/Hint →

Using Bφ =

(
µ0I

2π

r

R2

)
for the inside region,

∇×B = − ∂vφ
∂z

r̂ +
1

r

∂(rvφ)

∂r
ẑ = − 0r̂ +

1

r

∂

∂r

(
µ0I

2π

r2

R2

)
ẑ

=
µ0I

2πR2

1

r

d

dr
(r2)ẑ =

µ0I

2πR2
2ẑ = µ0

I

πR2
ẑ = µ0J
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— —

(c) Express B inside the wire (r < R) in Cartesian coordinates.

(Partial) Solution/Hint →

A drawing would show that

Bx = Br cosφ−Bφ sinφ , By = Br sinφ+Bφ cosφ ,

r =
√
x2 + y2 , cosφ =

x√
x2 + y2

=
x

r
, sinφ =

y√
x2 + y2

=
y

r
.

Thus using Bφ =
µ0I

2π

r

R2
, Br = 0, we get

Bx = −µ0I

2π

r

R2

y√
x2 + y2

=
µ0I

2πR2
(−y) , By =

µ0I

2πR2
x

And also obviously Bz = 0.

— —

(d) Using Cartesian coordinates, show that Ampere’s law in differential
form is satisfied inside the wire (r < R).

(Partial) Solution/Hint →

The curl is

∇×B =

(
∂By

∂x
− ∂Bx

∂y

)
k̂ =

µ0I

2πR2

(
∂

∂x
(x)− ∂

∂y
(−y)

)
k̂

=
µ0I

2πR2
2k̂ = µ0

(
I

πR2
k̂

)
= µ0J

— —



MP204, Spring 2021, Pr.set 08 - some solutions page 6

4. [SELF] We continue with the thick-wire geometry of the previous problem.

Now imagine that the current density is larger near the outer region of the
wire cross-section than at the center: J = kr, so that I =

(
2
3
πR3

)
k. (You

might want to derive this for yourself before working on the problems below.
You may have done something similar for problem set 04.) We thus have

J = krẑ =

(
I

2
3
πR3

r

)
ẑ for r≤R and J = 0 for r > R

Comments →

It would be extremely unwise to attempt this problem without making
multiple sketches of the geometry.

You should be able to derive I =
(

2
3
πR3

)
k using the relationship

I =

∫
Σ

J · dS

between the current I through a surface Σ and the current density J.

— —

(a) [SELF] Construct an Amperean loop and use Ampere’s law in integral
form, to find the magnetic field outside the wire (r > R). Express B
in cylindrical coordinates. Express your answer first in terms of I, and
then in terms of k.

(Partial) Solution/Hint →

We use an Amperean loop in the shape of a circle whose center lies
at the axis of the current-carrying wire, with radius r larger than the
wire radius R. The plane of the circle is perpendicular to the wire axis.
(Please do sketch the loop geometry yourself.)

The current through the loop is the entire current flowing through the
wire, I =

(
2
3
πR3

)
k. Hence the calculation using Ampere’s law is the

same as that for a thin long wire.∮
B · dl = µ0I =⇒ B(2πr) = µ0I
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To evaluate the line integral, the usual symmetry arguments have been
used: the field B points tangential to the Amperean loop, hence in the
same direction as dl, and its magnitude is the same everywhere on the
loop. Hence the line integral is |B| = B times the circumference (2πr) of
the loop. These symmetry arguments work because the current density
is cylindrically symmetric, J is a function of the cylindrical distance r
only.

Thus we obtain B = µ0I/(2πr) exactly as for a thin wire. In terms of
k,

B =
µ0I

2πr
=
µ0

(
2
3
πR3

)
k

2πr
=
µ0R

3k

3r

— —

(b) [SELF] Use an Amperean loop and Ampere’s law in integral form, to
find the magnetic field inside the wire (r < R). Express B in cylindrical
coordinates. Express your answer in terms of I and in terms of k.

(Partial) Solution/Hint →

Now the circular Amperean loop is inside the thick cylindrical wire.
Using Ampere’s law,∮

B · dl = µ0Iencl. =⇒ B(2πr) = µ0Iencl.

However the current Iencl. piercing through the loop is now no longer
the total current through the wire. To find Iencl., we need to integrate
over the plane surface enclosed by the loop.

Iencl. =

∫
J · dS =

∫ r

0

J(r1)(2πr1)dr1

We have used the fact that the current density J points in the same
direction as the surface element dS, and also that J is cylindrically
symmetric, does not depend on the angle. To avoid notation conflict,
the integration variable (cylindrical distance) is called r1 instead of the
usual r. The symbol r here already means the radius of the loop. Take
care to avoid having the same symbols meaning two different things!

Hence

Iencl. =

∫ r

0

kr1(2πr1)dr1 = 2πk

∫ r

0

r2
1dr1 =

2

3
πkr3
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Subsitituting into Ampere’s law, we obtain

B(2πr) = µ0
2

3
πkr3 =⇒ B =

1

3
µ0kr

2

Thus the magnetic field is zero at the axis (does that make physical
sense?), and grows quadratically with the distance as the cylindrical
distance is increased.

We have found expressions for the magnetic field for r < R and for r > R.
Surely the two expressions should match at the boundary, r = R?
Check whether they do match at r = R.
You could also try plotting the magnitude of the current as a function of r.

— —

(c) [SELF] Show that your expression for B inside the wire (r < R)
satisfies the differential form of Ampere’s law.

(Partial) Solution/Hint →

— —
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5. (Applying Maxwell’s equations.) In some region, the electric field changes
with time but the magnetic field does not:

E = −
(

2K0t

ε0

)
k̂ ; B = µ0K0

(
3yî− 3xĵ

)
.

(a) Find the charge density in the region.

(Partial) Solution/Hint →

Using the first equation

ρ = ε0∇ · E = ε0
∂

∂z

(
−2K0t

ε0

)
= 0

— —

(b) Find the current density in the region.

(Partial) Solution/Hint →

The current density is obtained from the fourth equation

J =
1

µ0

∇×B− ε0
∂E

∂t

=
1

µ0

(
µ0K0(−3− 3)k̂

)
−
(
−2K0k̂

)
= − 4K0k̂

— —

(c) Show that the continuity equation is satisfied.

(Partial) Solution/Hint →

From the current density that we have calculated, we see that

∇ · J =
∂

∂z
(−4K0) = 0

From the charge density that we have calculated, we find

∂ρ

∂t
=

∂

∂t
(0) = 0

Thus the continuity equation (∇ · J = −∂ρ
∂t

) is satisfied, as both sides
vanish.

— —
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6. An infinite wire carrying current I1 runs along the z axis; the current flows
from z = −∞ to z = +∞ through the origin.

Another infinite wire runs parallel to the y axis, lies in the x-y plane, and
goes through the point (−L, 0, 0). Current 2I1 flows through this wire, from
y = −∞ to y = +∞.

Find the magnetic field created by each wire at the point (0, 2L, 0) on the
y-axis. Find the magnitude of the total magnetic field at this point.

(Partial) Solution/Hint →

The situation is sketched below. The point (0, 2L, 0) is shown with a blue
dot.

I1

2I1

In the first wire (running along the z axis), the direction of current is
perpendicular to the page, pointing outward from the plane of the paper
(toward the reader). Why outward toward the reader, and not inward into
the page? Because the z axis points outward from the plane of the paper,
and the question specifies that the current flows from z = −∞ to z = +∞
through the origin.
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Why is the positive z direction pointing out of the paper?
(Could you have chosen it to point inward?)

We don’t have this freedom because we always use right-handed coordinate
systems, i.e., î× ĵ should be k̂, not −k̂. So, once the positive x and positive y
directions are specified, the positive z direction becomes specified as well and
there is no freedom in choosing between the positive z and negative z
directions.

At the point (0, 2L, 0), the first current (along z axis) creates magnetic field
in the negative x direction, of magnitude

B1 =
µ0I1

2π(2L)
=

µ0I1

4πL
.

(Make sure you know why this points in the −î direction.)

The other current (parallel to y axis) creates magnetic field in the negative
z direction, of magnitude

B2 =
µ0(2I1)

2π(L)
=

µ0I1

πL

(Again, make sure you are able by yourself to deduce the direction of this
magnetic field.)

The total magnetic field is thus

B1(−î) +B2(−k̂) = − µ0I1

4πL
î− µ0I1

πL
k̂

Exercise: Looking at this result and at the sketch on the previous page, try
visualizing the direction of the total magnetic field.

The magnitude of this total magnetic field is√(
µ0I1

4πL

)2

+

(
µ0I1

πL

)2

=
µ0I1

πL

√
17

4

— —


