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1. Consider a magnetostatic situation: currents and fields are time-independent.

(a) The vector potential in a region is given by

A1 =
(
−λz

2

)
ĵ +

(
λ
y

2

)
k̂

Find the magnetic field B. Use Ampere’s law in differential form to find
the current density.

(Partial) Solution/Hint →

B = ∇×A1 =

(
∂A1z

∂y
− ∂A1y

∂z

)
î =

(
λ

2
−
(
−λ

2

))
î = λî

Using Ampere’s law in differential form (∇×B = µ0J),

J =
1

µ0

∇×B = 0

— —

(b) Now consider the vector potentials

A2 = (4λ) î+ (λy) k̂ , A3 =

(
λ
y − z

2

)
ĵ +

(
λ
y + z

2

)
k̂

Show that both these vector potentials lead to exactly the same magnetic
field as the vector potential A1.

(Partial) Solution/Hint →

Both curls give B = λî.

— —
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(c) If two choices of the vector potential correspond to the same magnetic
field, their difference must have zero curl. Write down the vector function
A2 −A1 and show that it indeed has zero curl.

(Partial) Solution/Hint →

A2 −A1 = (4λ) î+
(
λ
z

2

)
ĵ +

(
λ
y

2

)
k̂

The curl is

∇× (A2 −A1) =

(
∂A1z

∂y
− ∂A1y

∂z

)
î =

(
λ

2
− λ

2

)
î = 0

— —

(d) A vector with zero curl can be written as a gradient of some scalar
function; thus A2 − A1 = ∇f . By examining the form of A2 − A1,
guess a scalar function f that does this job. Show that the gradient of
your function indeed gives A2 −A1.

(Partial) Solution/Hint →

The following function would do the job:

f = 4λx +
λ

2
yz + constant

— —
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2. An infinite wire carrying current I runs along the y axis; the current flows
from y = −∞ to y = +∞ through the origin.

A square loop of wire lies on the xy plane, with the four corners having
coordinates (x0, y0), (x0 + L, y0), (x0 + L, y0 + L), and (x0, y0 + L).

A sketch showing a top view of the xy plane might help.

(a) Find the magnetic flux through the square loop. The magnetic field is
created by the current through the long wire.

(Partial) Solution/Hint →

This won’t make much sense unless you sketch the situation. (For such a
problem in an exam, you really would be expected to include a sketch of
the positions of the wire and the loop.)

As long as we are considering points on the xy plane, the magnetic field

due to the wire has magnitude
µ0I

2πx
, because x is perpendicular to the

wire. The field is perpendicular to the xy plane, hence perpendicular to
the square loop surface; we thus don’t have to worry about angles. The
flux is

Φ =

∫
BdS =

∫ y0+L

y0

dy

∫ x0+L

x0

dx
µ0I

2πx

=
µ0I

2π
L

∫ x0+L

x0

dx
1

x

=
µ0IL

2π
ln

(
x0 + L

x0

)
— —
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(b) Imagine that the square loop moves away from the long wire with speed
v, so that x0(t) = vt but y0 and L are constant. Find the EMF generated
in the square loop.

(Partial) Solution/Hint →

Now the flux is time-dependent, because x0 is time-dependent.

Φ(t) =
µ0IL

2π
ln

(
1 +

L

x0(t)

)

E = Φ′(t) =
µ0IL

2π

1

1 + L/x0

(
− L
x20

)
x′0(t) = − µ0IL

2

2π

x′0
x0(x0 + L)

=⇒ |E| =
µ0IL

2

2π

v

vt(vt+ L)

— —

(c) Imagine instead that the square loop moves in the y-direction (parallel to
the long wire) with speed v, so that y0(t) = vt but x0 and L are constant.
Explain why there is no EMF generated in this situation.

(Partial) Solution/Hint →

Since the flux does not depend on y0, changing y0 will not change the
flux, thus no emf will be generated.

— —
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3. An electromagnetic system is described by the time-dependent fields

E = −Cy cos(ωt)k̂ ; B = B0 sin(ωt)̂i .

{
Here B0 and ω are

positive constants.

(a) [5 pts] Using Maxwell’s third equation (which concerns the curl of the
electric field), express the constant C as a function of B0 and ω.

(Partial) Solution/Hint →

Noting

∇× E = î

(
∂Ez

∂y
− ∂Ey

∂z

)
+ ĵ

(
∂Ex

∂z
− ∂Ez

∂x

)
+ k̂

(
∂Ey

∂x
− ∂Ex

∂y

)
= î

∂Ez

∂y
= − C cos(ωt)̂i

and

−∂B
∂t

= −B0ω cos(ωt)̂i

Maxwell’s third equation gives us C = B0ω.

— —

(b) Find the current density J. Your answer should contain B0 and ω, not
C. Which of Maxwell’s equations are you using?

(Partial) Solution/Hint →

Using Maxwell’s fourth equation,

J =
1

µ0

∇×B − ε0
∂E

∂t
= 0 − ε0

(
+Cyω sin(ωt)k̂

)
= − ε0B0ω

2y sin(ωt)k̂

— —
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4. A long solenoid has n turns per unit length and radius R. The current through
the solenoid increases with time: I(t) = αt. We will use Maxwell’s 3rd equation
(Faraday’s law) in integral form, to calculate the magnitude of the electric
field created by electromagnetic induction. The calculation is silmilar to using
Ampere’s law to calculate the magnetic field due to a thick wire.

We calculated in class the magnetic field inside and outside a solenoid, for
steady currents. In the present case the current is time-dependent: Assume
that the magnetic field at any instant is given by the steady-state expression,
using the instantaneous value of the current.

(a) Calculate the magnitude of the electric field induced at a distance r > R
from the axis of the solenoid (outside the solenoid).

(Partial) Solution/Hint →

µ
0

B =     nI

B = 0

The magnetic field is ZERO outside the
solenoid. Inside the solenoid, the field is

µ0nI(t) = µ0nαt

so that the flux enclosed in the solenoid is

ΦB = πR2µ0nαt

Consider a circular loop of radius r > R; centered on
the solenoid axis. By symmetry the electric field is
the same everywhere on this loop. The line integral
of the electric field is then∮

E · dl = E(2πr)

Faraday’s law in integral form then gives

E(2πr) = − d

dt
ΦB = −πR2µ0nα

Thus

E =
R2µ0nα

2r

E

— —
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(b) Calculate the magnitude of the electric field induced at a distance r < R
from the axis (inside the solenoid).

(Partial) Solution/Hint →

Now consider a circular loop of radius r < R centered on the solenoid
axis (inside the solenoid). Now the flux enclosed is

ΦB = πr2µ0nαt

while the line integral is still E(2πr). Therefore Faraday’s law in integral
form gives

E(2πr) = − d

dt
ΦB = −πµ0nαr

2

Thus
E =

(µ0nα

2

)
r

— —
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5. A circular conducting loop with radiusR, centered at the origin, rotates around
the y-axis, so that the angle θ(t) between the normal to the loop and the z-
axis varies as θ(t) = Ωt. A constant magnetic field points in the z-direction:
B = B0k̂. Find the EMF induced in the loop.

(Partial) Solution/Hint →

The magnetic flux through the loop is time-dependent, because the angle
between the magnetic field and the normal to the loop is changing with time.
The flux is

Φ = B(πR2) cos θ = πBR2 cos(Ωt)

E = − dΦ

dt
= πBR2Ω sin(Ωt)

— —


