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1. Consider a capacitor consisting of two parallel metallic plates, each of area
A. We showed in an earlier problem set that, when the plates carry opposite
charges +Q and −Q, the electric field in the region between the plates has
magnitude E = Q/(Aε0).

Consider now the situation that the capacitor is discharging, i.e., the
magnitude of the charge on each plate is decreasing, as Q(t) = Q0e

−t/T0 .
Find the displacement current density in the region between the two plates.

(Partial) Solution/Hint →

The electric field magnitude is

E(t) =
Q(t)

Aε0
=

Q0

Aε0
e−t/T0

Introducing the unit vector n̂ pointing in the direction of the electric field,
we can write

E(t) =
Q0

Aε0
e−t/T0 n̂

=⇒ JD = ε0
∂E

∂t
=

Q0

A

(
− 1

T0
e−t/T0

)
n̂ = − Q0

AT0
e−t/T0 n̂

— —
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2. An electromagnetic field is described by the scalar potential V and vector
potential A, given by

V =
2B0

µ0ε0
t ; A = B0

[
xî+ (y sinωt− 3z)k̂

]
where B0 and ω are positive constants.

(a) Find the electric and magnetic fields in this system.

(Partial) Solution/Hint →

E = −∇V − ∂A

∂t
= − 0−B0 (ωy cosωt) k̂ = −B0ωy cosωt k̂

B = ∇×A = (∂yAz − ∂zAy) î + 0ĵ + 0k̂ = B0 sinωt î

— —

(b) Show explicitly that Maxwell’s third equation is satisfied.

(Partial) Solution/Hint →

∇× E = (∂yEz − ∂zEy) î + 0ĵ + 0k̂ = −B0ω cosωt î

= − ∂

∂t

(
B0 sinωt î

)
= − ∂B

∂t

Thus Maxwell’s third equation is satisfied.

— —
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(c) If E and B are derived from potentials, then the 3rd equation is
expected to be satisfied automatically. Why? Which of Maxwell’s
other equations is satisfied automatically?

(Partial) Solution/Hint →

The fields are expressed in terms of the potentials

E = −∇V − ∂A

∂t
, B = ∇×A

These imply Maxwell’s 3rd equation (Faraday’s law):

∇× E +
∂B

∂t
= ∇×

(
−∇V − ∂A

∂t

)
+
∂

∂t
(∇×A)

= −∇× (∇V )−∇×
(
∂A

∂t

)
+∇×

(
∂A

∂t

)
In the last term, the order of the two operations (curl and time-
derivative) have been switched. Thus

∇× E +
∂B

∂t
= −∇× (∇V ) = 0

because the curl of a gradient is always zero.

Expressing the fields in terms of the potentials also leads to the 2nd
equation (zero divergence of B):

∇ ·B = ∇ · (∇×A) = 0

because the divergence of a curl is always zero.

Thus, if E and B are derived from potentials, then Maxwell’s 3rd and
2nd equations are satisfied automatically.

— —
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(d) Find the displacement current density JD and the current density J.

(Partial) Solution/Hint →

Displacement current density:

JD = ε0
∂E

∂t
= ε0B0ω

2y sinωt k̂

For the current density, we use Maxwell’s fourth equation:

J =
1

µ0

∇×B − JD = 0 − ε0B0ω
2y sinωt k̂ = − ε0B0ω

2y sinωt k̂

— —

(e) Show whether or not the continuity equation is satisfied.

(Partial) Solution/Hint →

The continuity equation is ∇ · J = −∂ρ
∂t

.

The current density has only a z-component, which is not z-dependent.
Hence it has zero divergence:

∇ · J =
∂Jz
∂z

= 0

To find the charge density ρ, we use Maxwell’s first equation:

ρ = ε0∇ · E = 0

The divergence of the electric field is zero for the same reason: it has
only a z-component, which is not z-dependent. This leads to

−∂ρ
∂t

= 0 = ∇ · J

i.e., the continuity equation is satisfied.

— —
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3. (a) Maxwell’s first equation in differential form is an expression for the
divergence of the electric field. Rewrite this equation in terms of the
scalar and vector potentials, V and A.

(Partial) Solution/Hint →

Using E = −∇V − ∂A
∂t

, we get

∇ · E = −∇ · (∇V ) − ∇ ·
(
∂A

∂t

)
= −∇2V − ∂

∂t
(∇ ·A)

Thus Maxwell’s first equation becomes

∇2V +
∂

∂t
(∇ ·A) = − ρ

ε0

— —

(b) Write down the Coulomb gauge condition for the vector potential. Use
this condition to express Maxwell’s first equation as an equation for
the scalar potential V .

(Partial) Solution/Hint →

Coulomb gauge condition: ∇ ·A = 0.

The first equation becomes

∇2V = − ρ

ε0

which is known as Poisson’s equation.

— —
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4. A square loop with sides of length L lies in the x-y plane in a region in
which the magnetic field points in the z-direction and changes over time as

B(t) = B0e
−5t/t0 k̂

(a) Find the magnitude of the EMF induced in the wire, and sketch a plot
of the EMF as a function of time.

(Partial) Solution/Hint →

Magnetic flux: ΦB = L2B0e
−5t/t0

EMF:

|E| =
∣∣∣∣dΦB

dt

∣∣∣∣ =
5L2B0

t0
e−5t/t0

Plot: should show an exponentially decaying function of time.

— —

(b) You are looking from ‘above’ onto the x-y plane, so that the positive
z-axis points out of the paper toward you. What is the direction of
the induced current in the loop? (Counterclockwise or clockwise?)
You will only get credits for your answer if you justify it clearly using
Lenz’s law.

(Partial) Solution/Hint →

The induced current will oppose the change causing the induction. The
change is due to the decrease of B in positive z-direction. Therefore,
the induced current will produce a field in the positive z direction, to
bolster up the field which is decreasing. Thus the current needs to be
counterclockwise when viewed from above, as this creates a magnetic
field in the positive z direction.

— —
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5. A thin glass rod of length L lies along the y axis with one end at the origin
and the other end at (0, L, 0). The rod carries a uniformly distributed
postive charge Q.

(a) Consider the point (0, y0, 0), also on the y axis, with y0 > L. Calculate
the electric field generated at this point. You will have to first consider
an infinitesimal element of the rod, and then integrate over appropriate
limits.

(Partial) Solution/Hint →

Consider an infinitesimal slice of the
rod at distance y from the origin, of
width dy. The amount of charge in
this small piece is (Q/L)dy, and is it at
distance y0−y from the point (0, y0, 0).
The electric field due to this piece of
charge is

dE =
(Q/L)dy

4πε0

ĵ

(y0 − y)2

=
(Q/L)ĵ

4πε0

dy

(y − y0)2

y
0

y 
 −

y
0

dy

x

y

L
y

Integrating from y = 0 to y = L gives the total electric field created
at the point (0, y0, 0):

E =
(Q/L)ĵ

4πε0

∫ L

0

dy

(y − y0)2
=

(Q/L)ĵ

4πε0

[
−1

(y − y0)

]L
0

=
(Q/L)ĵ

4πε0

(
1

y0 − L
− 1

y0

)
=

Q

4πε0

1

y0(y0 − L)
ĵ

— —

(b) Consider the limit y0�L and approximate your result for this limit.
Explain why you could have expected this result for the electric field
far from the rod, by comparing with the field due to a point charge.
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(Partial) Solution/Hint →

At large distances, y0 � L, this simplifies to

E ≈ Q

4πε0

1

y20
ĵ

This is the electric field due to a point charge Q at distance y0. This
makes sense because, at large enough distance, the structure of the
charge-carrying stick will not be important and it will look like a small
(≈point) object.

— —

(c) Consider the point (x0, 0, 0) on the x axis, with x0 > L. Calculate the
electric field generated at this point.

In this case you will have to consider both components of the field
created by the infinitesimal element, and integrate separately. You
might need the integrals∫

du

(u2 + a2)3/2
=

u

a2
√
u2 + a2

;

∫
udu

(u2 + a2)3/2
= − 1√

u2 + a2
.

(Partial) Solution/Hint →

Consider the same infinitesimal point as before. From the figure: the
element is at distance

√
y2 + x20 from the point (x0, 0, 0) where we

need to calculate the field. The field has both x and y components.

L

x
0

0

y  + x
2

2
(         )

1/2

dy

y

θ
x

θ

y

E
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The electric field created by the small element has the magnitude

dE =
(Q/L)dy

4πε0

1

y2 + x20

The x- and y- components of this field element are

dEx = dE cos θ =
(Q/L)dy

4πε0

1

y2 + x20

x0√
y2 + x20

=
(Q/L)x0

4πε0

dy

(y2 + x20)
3/2

dEy = − dE sin θ = − (Q/L)dy

4πε0

1

y2 + x20

y√
y2 + x20

= − (Q/L)

4πε0

ydy

(y2 + x20)
3/2

The components of the total electric field are found by integrating the
two expressions above:

Ex =

∫
dEx =

(Q/L)x0
4πε0

∫ L

0

dy

(y2 + x20)
3/2

=
(Q/L)x0

4πε0

[
y

x20
√
y2 + x20

]L
0

=
Q/(Lx0)

4πε0

(
L√

L2 + x20
− 0√

02 + x20

)

=
1

4πε0

(
Q

x0
√
L2 + x20

)

and

Ey =

∫
dEy = − (Q/L)

4πε0

∫ L

0

ydy

(y2 + x20)
3/2

= − (Q/L)

4πε0

[
− 1√

y2 + x20

]L
0

= − (Q/L)

4πε0

(
1

x0
− 1√

L2 + x20

)

— —


