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Some partial solutions and/or hints are provided here.

Not carefully proofread and possibly incomplete — please use responsibly.

If you spot any typo’s or errors, please let me know.

−−−−−−−−−−−−− ?−−−−−−−−−−−−

1. An electromagnetic system in vacuum (no charges or currents are present!)
is described by the fields

E = E0 exp

[
−(x− wt)2

2L2

]
ĵ

B = (E0/w) exp

[
−(x− wt)2

2L2

]
k̂

L and w are positive constants.

exp[u] is common notation for
the exponential function eu.

(a) Show that these fields obey Maxwell’s third equation (which concerns
the curl of the electric field).

(Partial) Solution/Hint →

∇× E =
∂Ey
∂x

k̂ = − 2E0

2L2
(x− wt) exp

[
−(x− wt)2

2L2

]
k̂

∂B

∂t
=

E0

w

(
− w

2L2

)
(−2(x− wt)) exp

[
−(x− wt)2

2L2

]
k̂

=
E0

L2
(x− wt) exp

[
−(x− wt)2

2L2

]
k̂ = −∇× E

— —

(b) The fields should also obey Maxwell’s fourth equation in vacuum. Find
the value of w for which this works.

(Partial) Solution/Hint →

Fourth law in vacuum: ∇×B =
1

c2
∂E

∂t
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Comparing

∇×B =
E0

ωL2
(x− wt) exp

[
−(x− wt)2

2L2

]
ĵ

and
1

c2
∂E

∂t
=

1

c2
E0w

L2
(x− wt) exp

[
−(x− wt)2

2L2

]
ĵ

it is clear that the fields satisfy the fourth equation only if

1

ω
=

w

c2
=⇒ w = ±c

Since w is given to be positive, w = c. Thus traveling solutions of the
Maxwell equations are forced to have speed c.

— —

(c) Look up the properties of the gaussian function (e.g., wikipedia). You
should be able to tell the center and the width of a gaussian by looking
at its form.

(Partial) Solution/Hint →

The function exp

[
−(x− x0)2

2σ2

]
represents a gaussian centered at x0

and with width σ.

— —

(d) Sketch plots of the magnitude of the electric field as a function of the
position, at the time instants t = 0, t = 2L/w, and t = 4L/w. (You
can think of these as ‘snapshots’ at different points of time.)

You can use a plotting program for guidance if needed, but please
submit a hand-drawn sketch, not a computer printout.

In which direction is our electromagnetic pulse traveling?

(Partial) Solution/Hint →

The plots should show the functions

exp

[
− x2

2L2

]
, exp

[
−(x− 2L)2

2L2

]
, exp

[
−(x− 4L)2

2L2

]
.
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0 2L 4L

t 
=
 0

t = 2L/w

t =
 4

L
/w

Observing the positions of the three gaussians, we notice that the
structure moves in the positive x direction with increasing time. The
electromagnetic pulse is thus traveling in the direction of increasing
positive x. Of course, one should have been able to guess this from
the fact that the fields are functions of x− ct.

— —

(e) Calculate the Poynting vector S. In case it has not been treated in

class yet: S =
1

µ0

E×B.

(Partial) Solution/Hint →

S =
1

µ0

E×B =
1

µ0

E2
0

w
exp

[
−(x− wt)2

L2

]
î =

E2
0

cµ0

exp

[
−(x− ct)2

L2

]
î

— —

(f) The Poynting vector gives the ‘current density’ for the flow of
electromagnetic energy. Explain whether the calculated direction of S
makes sense.

(Partial) Solution/Hint →

The pulse is traveling in the positive x direction, so the energy it is
carrying must also be traveling in this direction; hence it makes sense
that S points in the î direction.

— —
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(g) Calculate the energy density for electromagnetic fields,

u =
1

2

(
ε0E

2 +
1

µ0

B2

)
for the given fields.

(Partial) Solution/Hint →

u =
ε0E

2
0

2
exp

[
−(x− wt)2

L2

]
+

E2
0

2w2µ0

exp

[
−(x− wt)2

L2

]
=

E2
0

2

(
ε0 +

1

w2µ0

)
exp

[
−(x− wt)2

L2

]
Using the fact that w2 = c2 = 1/(ε0µ0), we get

1

w2µ0

= ε0 ,

hence

u =
E2

0

2
(2ε0) exp

[
−(x− ct)2

L2

]
= ε0E

2
0 exp

[
−(x− ct)2

L2

]
— —
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(h) Conservation of electromagnetic energy in vacuum is encoded in the
relation (analogous to the continuity equation for charge)

∇ · S +
∂u

∂t
= 0 .

Find out whether this is satisfied for our fields.

(Partial) Solution/Hint →

∇ · S =
∂Sx
∂x

=
E2

0

cµ0

∂

∂x
exp

[
−(x− ct)2

L2

]
=

E2
0

cµ0

(
− 1

L2

)
2(x− ct) exp

[
−(x− ct)2

L2

]
= − 2E2

0

cµ0L2
(x− ct) exp

[
−(x− ct)2

L2

]

∂u

∂t
= ε0E

2
0

∂

∂t
exp

[
−(x− ct)2

L2

]
= ε0E

2
0

(
−(−c)

L2

)
2(x− ct) exp

[
−(x− ct)2

L2

]
=

2ε0cE
2
0

L2
(x− ct) exp

[
−(x− ct)2

L2

]
Thus

∇ · S +
∂u

∂t
=

2E2
0

cµ0L2

(
−1 + c2ε0µ0

)
(x− ct) exp

[
−(x− ct)2

L2

]
Noting that −1 + c2ε0µ0 = −1 + 1 = 0 gives us the desired result.

— —
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2. Using Maxwell’s equations in vacuum and the definitions of S and u, derive
the relation ∇ · S = −∂u/∂t. You may need the vector identity

∇ · (A×B) = B · (∇×A)−A · (∇×B)

(Partial) Solution/Hint →

∇ · S =
1

µ0

∇ · (E×B) =
1

µ0

B · (∇× E)− 1

µ0

E · (∇×B)

=
1

µ0

B ·
(
−∂B
∂t

)
− 1

µ0

E ·
(

1

c2
∂E

∂t

)
= − 1

µ0

B · ∂B
∂t
− 1

µ0c2
E · ∂E

∂t

= − ε0E ·
∂E

∂t
− 1

µ0

B · ∂B
∂t

Note that

∂

∂t
(B2) =

∂

∂t
(B ·B) = B · ∂B

∂t
+
∂B

∂t
·B = 2B · ∂B

∂t

so that

B · ∂B
∂t

=
1

2

∂

∂t
(B2) and similarly, E · ∂E

∂t
=

1

2

∂

∂t
(E2) .

Therefore

∇ · S = − ε0
2

∂

∂t
(E2)− 1

2µ0

∂

∂t
(B2)

= − ∂

∂t

(
ε0
2
E2 +

1

2µ0

B2

)
= − ∂u

∂t

— —
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3. Consider an electromagnetic wave travelling through empty space described
by the electric and magnetic fields

E = 3α cos

(
1

L
(y − ct)

)
î , B = G cos

(
1

L
(y − ct)

)
where α and L are positive constants and G is a constant vector.

(a) In which direction is this wave traveling?

(Partial) Solution/Hint →

The spatial dependence appears as y−ct. This means the wave travels
in the positive y direction.

If the fields were functions of y + ct, it would be a wave traveling in
the negative y direction.

— —
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(b) Find the magnitude (in terms of α) and the direction of the constant
vector G. You might need to use one of Maxwell’s equations.

(Partial) Solution/Hint →

Using Maxwell’s third equation:

∂B

∂t
= −∇× E = −

[
∂Ey
∂x
− ∂Ex

∂y

]
k̂

= −
[
0− 3α

(
− 1

L

)
sin

(
1

L
(y − ct)

)]
k̂

= (−3α/L) sin

(
1

L
(y − ct)

)
k̂

Integrating gives

B = (−3α/L)

(
1

−c/L

)
(−1) cos

(
1

L
(y − ct)

)
k̂ +

[
time-independent
constant vector

]
= − 3α

c
cos

(
1

L
(y − ct)

)
k̂ +

[
time-independent
constant vector

]
Comparing with the given form for the magnetic field, the constant
vector (constant of integration) is seen to be zero. In addition, the
constant G is seen to be

G = − 3α

c
k̂

Note that finding a vector means finding both it’s magnitude and
direction.

— —

(c) What is the wavelength and the frequency of this wave?

(Partial) Solution/Hint →

Comparing with the standard form

cos

(
2π

λ
(y − ct)

)
the wavelength λ is seen to be related to L according to

2π

λ
=

1

L
=⇒ λ = 2πL

— —
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4. An electromagnetic wave has an electric field given by

E = E0 cos

(
2πc

λ
t

)
sin

(
2πz

λ

)
î

where λ is a positive constant.

(a) Use Maxwell’s third equation (Faraday’s law in differential form) to
calculate the associated magnetic field B. You can assume the time-
independent additive term (constant of integration) to be zero.

(Partial) Solution/Hint →

Using Maxwell’s third equation,

∂B

∂t
= −∇× E = −

(
∂Ex
∂z
− ∂Ez

∂x

)
ĵ

= −
(

2πE0

λ
cos

(
2πc

λ
t

)
cos

(
2πz

λ

)
− 0

)
ĵ

= − 2πE0

λ
cos

(
2πc

λ
t

)
cos

(
2πz

λ

)
ĵ

Integrating over time gives

B = − E0

c
sin

(
2πc

λ
t

)
cos

(
2πz

λ

)
ĵ + G(r)

Here G(r) is the ‘constant of integration’. Since the integration is
over time, it can be an arbitrary function of space. As suggested in
the problem set, we set it to zero and obtain

B = − E0

c
sin

(
2πc

λ
t

)
cos

(
2πz

λ

)
ĵ

— —

(b) Is this wave traveling? In which direction?

(Partial) Solution/Hint →

This is a standing wave — it does not travel in any direction.

If an equation describes a traveling wave in the +z direction, the
space- and time-dependence can be combined so that the expression is
a function of z−ct. Similarly, for a traveling wave in the −z direction,
the space and time dependence appear only in the combination z+ ct.

Here, the dependence of the fields on space and time do not appear in
the combination z − ct or z + ct.
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— —

(c) Calculate the Poynting vector and explain the direction of energy flow
using your result.

(Partial) Solution/Hint →

Taking the cross product of the two fields

S =
1

µ0

E×B

=
E2

0

µ0c
cos

(
2πc

λ
t

)
sin

(
2πz

λ

)
sin

(
2πc

λ
t

)
cos

(
2πz

λ

)
k̂

=
E2

0

4µ0c
sin

(
4πc

λ
t

)
sin

(
4πz

λ

)
k̂

Because of the factor sin
(
πc
λ
t
)
, The direction of this vector is +k̂ half

the time and −k̂ the other half of the time. The average energy flow
is thus zero.

— —


