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Preface

These lecture notes accompany a course which is a short introduction to the four famous
Maxwell equations. These four equations unify electric and magnetic phenomena and give
birth to what is thereafter called the electromagnetic field.

Maxwell gave a lecture on his work to the Royal Society of London in 1864 and his
results were then published 1 in 1865. Faraday had earlier suggested 2 that light was as an
electromagnetic wave in 1846; this fact was duly acknowledged by Maxwell in his paper.

There are a huge number of books on electromagnetic theory and so we only recommend
three; the college library will provide one with many, many more. So our three titles are—the
first one is the main text, the others are for subsidiary reading:

1. Grant I. S. and Philips W. R., Electromagnetism, Wiley, (1990).

2. Feynman R. P., Leighton R. B. and Sands M. L., The Feynman lectures on physics:

volume II, Addison–Wesley, (1965).

3. Purcell E.M., Electricity and Magnetism, Berkeley physics course volume II, McGraw–
Hill, (1985).

Charles Nash

1 Maxwell J. C., A dynamical theory of the electromagnetic field, Phil. Tran. Roy. Soc, 155, 459–512,

(1865).
2 Faraday M., Thoughts on ray vibrations, Phil. Mag., 28, 345–350, (1846). Faraday’s Thoughts on ray

vibrations, were actually delivered in 1846 as an off the cuff lecture to the Royal Society on the occasion of
the scheduled speaker not being available.

It seems very likely that Faraday was stimulated to think along these lines by the fact that in 1845 he

had carried out an experiment which showed that polarised light had its plane of polarisation rotated when

it passed through a magnetic field.



CHAPTER I

From electric charges to potentials

§ 1. Preliminaries on constants and units

I
N this course we shall provide material which is intended to be self-contained but refer-
ence elsewhere is occasionally needed. It is also good practice to read around a subject
as widely as one’s time will allow and, in particular, to look at the books recommended

in the preface.

The units we shall use are MKSA units which are the standard units currently used in
all the natural sciences and in engineering. For electromagnetism they are not ideal since
(as we shall gradually see) their definitions contain arbitrary factors of π in situations where
there is no circular, cylindrical or spherical symmetry. The most unfortunate consequence
of this (as will become obvious at the time) factors of π then disappear from situations
where there is some circular, cylindrical or spherical symmetry.

Finally a universal constant that occurs in electromagnetism is ǫ0 known as the per-

mittivity of free space 1 . In our MKSA units its value is given by

ǫ0 = 8.85 × 10−12 coulomb2/newton-metre2

or entirely equivalently ǫ0 = 8.85 × 10−12volt-metre/coulomb
(1.1)

The coulomb being the unit of charge as we shall see below. It is often useful, for numerical
purposes, to know that, since c, the velocity of light is given by

c = 3 × 108m/sec (1.2)

then

ǫ0c
2 =

107

4π

⇒
1

4πǫ0
≃ 9 × 109

(1.3)

1 The phrase free space often occurs in electromagnetic theory and it refers to charge free space i.e. a

vacuum as opposed to a solid, liquid or gas.
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§ 2. Coulomb’s law.

The fundamental fact lying at the base of all electromagnetism is that the forces between
charges are of the inverse square type. The formal statement of this fact is known as
Coulomb’s law. Formally we have

Coulomb’s law If two charges of size q1 and q2 are located at r1 and r2 respectively then

the force F between them is given by

F =
1

4πǫ0

q1q2

|r1 − r2|2
(r1−̂r2)

=
1

4πǫ0

q1q2

|r1 − r2|3
(r1 − r2)

(1.4)

When the force is computed with this formula the units of charge are called Coulomb’s.
This law implies the familiar property that like charges repel and that unlike charges

attract. With Coulomb’s law under our belt we can immediately proceed to the notion of
an electric field E.

Definition (Electric field E) The electric field E at a point r exerted by any collection of

charges is the force that would act on a unit charge placed at r.

Example The electric field due to a single charge

Combining this definition with Coulomb’s law we can immediately compute the electric
field E(r) at r exerted by a single charge q. For, if q is located at r1, then the force F on a
unit charge at r is given by

F =
q

4πǫ0

(r−̂r1)

|r − r1|2

i.e. E(r) =
q

4πǫ0

(r−̂r1)

|r − r1|2

(1.5)

It now easily follows that if a charge Q is placed in an electric field E then it is acted
on (at r) with a force F(r) where

F(r) = QE(r) (1.6)

and if the precise point r meant is not important, we often abbreviate this to simply

F = QE (1.7)

Having obtained the electric field exerted by one charge we now want the field due to a
collection of charges. For this purpose we need what is called the principle of superposition.
This is an experimentally discovered fact which says roughly that electric fields due to
separate charges “add together”. More formally we have

The principle of superposition. If n charges q1, q2, . . . , qn are located at r1, r2, . . . , rn

respectively, then their electric field E at r is additive, i.e. it is given by

E(r) =
q1

4πǫ0

(r−̂r1)

|r − r1|2
+

q2

4πǫ0

(r−̂r2)

|r − r2|2
+ · · · +

qn

4πǫ0

(r−̂rn)

|r − rn|2
(1.8)
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More briefly we can write

E = E1 + E2 + · · · + En

=

n∑

i=1

Ei

where Ei =
qi

4πǫ0

(r−̂ri)

|r − ri|2

(1.9)

The electric field, being a vector quantity, requires three quantities for its specification;
actually this information triplet contains a lot of redundancy. We shall now see that only
one scalar quantity is really needed to specify an electric field. this quantity is known as
the potential and it is the next thing that we shall consider.

§ 3. The potential function V or Φ

There is a potential function V (also often denoted by Φ) associated with every electric field
E. For a given E it is defined by the equation

E(r) = − gradV (r)

≡−∇V (r)

= −

(
∂V (r)

∂x
i +

∂V (r)

∂y
j +

∂V (r)

∂z
k

) (1.10)

where of course
r = xi + yj + zk (1.11)

Example The potential for a single charge

If we place a single charge of size q1, say, at the location r1then it is easy to check by direct
differentiation that its potential at an arbitrary point r is given by

V (r) =
q1

4πǫ0

1

|r − r1|
(1.12)

i.e. one has that the electric field E of the charge, which we obtained above in 1.5 , is given
by

E = −∇

(
q1

4πǫ0

1

|r − r1|

)
(1.13)

and indeed the differentiation gives us the result that

−∇

(
q1

4πǫ0

1

|r − r1|

)
= −

q1

4πǫ0
∇

(
1

|r − r1|

)
=

q1

4πǫ0

(r−̂r1)

|r − r1|2
(1.14)

in perfect agreement with 1.5.
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The principle of superposition for potentials It is easy to prove that the principle

of superposition also applies to potentials. To prove this assume that we have, as in 1.8, n
charges q1, q2, . . . , qn at r1, r2, . . . , rn respectively, then their potential V (r) at r is given by

V (r) = V1(r) + V2(r) + · · · + Vn(r)

=

n∑

i=1

Vi(r)

where Vi(r) =
qi

4πǫ0

1

|r − ri|

(1.15)

This is easy to prove: we know know that the electric field produced by these charges is
given by

E = E1 + E2 + · · · + En

=
n∑

i=1

Ei

where Ei =
qi

4πǫ0

(r−̂ri)

|r − ri|2

(1.16)

but we also know that

Ei = −∇

(
qi

4πǫ0

1

|r − ri|

)
(1.17)

Hence we can write

E = −∇

(
q1

4πǫ0

1

|r − r1|

)
−∇

(
q2

4πǫ0

1

|r − r2|

)
− · · · − ∇

(
qn

4πǫ0

1

|r − rn|

)

= −∇

(
q1

4πǫ0

1

|r − r1|
+

q2

4πǫ0

1

|r − r2|
+ · · · +

qn

4πǫ0

1

|r − rn|

) (1.18)

In other words we have

E = −∇V (1.19)

where
V (r) = V1(r) + V2(r) + · · · + Vn(r)

and Vi(r) =
qi

4πǫ0

1

|r − ri|

(1.20)

which is indeed the principle of superposition.
Now we see that given a particular potential V it is easy to find the corresponding

electric field E: one just has to do the differentiations appropriate for the expression −∇V .
We would like to be able to go in the reverse direction: i.e. given the electric field E

construct its associated potential V . This is indeed possible but is a little harder as, can
easily be anticipated, it involves integration rather than differentiation. We are ready to
digest the argument.
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The argument rests on one technical piece of calculus. This is that if f(x, y, z) is any
differentiable function, then

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz (1.21)

which follows from Taylor’s theorem. It also follows that
∫

df = f (1.22)

Suppose now that we are given an electric field E. Let V be its potential function so that

dV =
∂V

∂x
dx +

∂V

∂y
dy +

∂V

∂z
dz (1.23)

But if we write
dr = dxi + dyj + dzk (1.24)

then we note that

∇V · dr =

(
∂V (r)

∂x
+

∂V (r)

∂y
+

∂V (r)

∂z

)
· (dxi + dyj + dzk)

=
∂V

∂x
dx +

∂V

∂y
dy +

∂V

∂z
dz

= dV

(1.25)

In other words we have
dV = −E · dr (1.26)

Finally we take a path Γ, say, beginning at an arbitrary but fixed point r0 and ending at r

and we integrate along Γ. In this way we obtain

∫

Γ

dV ≡

∫ r

r0

dV = −

∫ r

r0

E · dr

⇒ V (r) − V (r0) = −

∫ r

r0

E · dr

⇒ V (r) = V (r0) −

∫ r

r0

E · dr

(1.27)

But we can discard the constant quantity V (r0) on the right hand side of the last equation
since we can always alter a potential V by a constant without changing its associated electric
field: this is obvious if one simply notes that, if C is a constant, then

∇(V + C) = ∇V, because ∇C = 0 (1.28)

Thus we take our final expression for the potential V due to an electric field E to be simply

V (r) = −

∫ r

r0

E · dr (1.29)
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Summarising the relations between E and V then gives us the pair of equations

E = −∇V

V = −

∫ r

r0

E · dr
(1.30)

§ 4. Laplace’s equation

Our next topic will be to obtain an important equation due to Laplace and others which is
obeyed by V . The potential V due to any (discrete) system of charges satisfies an equation
known as Laplace’s equation. This equation is

∇2V = 0 (1.31)

or, spelled out in more detail,

div · gradV = ∇ · (∇V ) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
V = 0 (1.32)

The proof of Laplace’s equation is not difficult; because of the superposition principle
it requires just one simple calculation involving the potential due to a single charge. We
now give the proof: take a general collection of n charges so that, as in 1.20, their potential
at r is given by

V (r) = V1(r) + V2(r) + · · · + Vn(r)

and Vi(r) =
qi

4πǫ0

1

|r − ri|

(1.33)

Hence
∇2V = ∇2 (V1(r) + V2(r) + · · · + Vn(r))

=

n∑

i=1

∇2Vi(r)

= 0, since, as we shall now show,

∇2Vi(r) = 0, for each i

(1.34)

All that remains is to show that
∇2Vi(r) = 0 (1.35)

and we do this by direct differentiation. We simply write

r = xi + yj + zk

ri = xii + yij + zik
(1.36)

So that
|r − ri| = |{(x − xi)i + (y − yi)j + (z − zi)k}|

=
√

(x − xi)2 + (y − yi)2 + (z − zi)2
(1.37)
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This means that

∇2Vi(r) =
qi

4πǫ0

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
A

where A =

(
1√

(x − xi)2 + (y − yi)2 + (z − zi)2

) (1.38)

and it is then a completely straightforward matter to verify that

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)(
1√

(x − xi)2 + (y − yi)2 + (z − zi)2

)
= 0 (1.39)

So we have indeed proved Laplace’s equation for an arbitrary discrete collection of charges.
It is worthwhile observing that Laplace’s equation is really a consequence of the

Coulomb’s inverse square law of force. Hence the potential V for other situations where an
inverse square law applies will also satisfy Laplace’s equation. For example the gravitational

potential produced by a system of masses also satisfies Laplace’s equation.
This brings the present chapter to a close.



CHAPTER II

Calculating electric fields: Gauss’s theorem

§ 1. Gauss’ dielectric flux theorem

W
E are now ready to consider a remarkable result whose existence is directly trace-
able to the inverse square force law between charges—were this force law to be
an inverse cube law, or indeed were this force to decrease with distance at any

rate other than an inverse square, then Gauss’ dielectric flux theorem would not hold but
would be replaced by something more complicated. The theorem states the following

Theorem (Gauss’ dielectric flux theorem) If a closed surface S contains a total amount of

electric charge Q then the flux
∫

S
E · dS of the electric field E out of S is given by

∫

S

E · dS =
Q

ǫ0
(2.1)

Proof: We shall give a proof which is valid for a discrete collection of charges. Hence we
shall now assume that Q is a collection of a finite number n of charges q1, q2, . . ., qn.

Now let us take just one of these charges qi, say, which is located at the point O. Now
consider an arbitrary infinitesimal patch dS on the surface S which is a distance r from O.
The flux of qi through this patch is

E · dS (2.2)

But E on dS is given by

E =
qi

4πǫ0

r̂

r2
(2.3)

so that

E · dS =
qi

4πǫ0

r̂ · dS

r2
(2.4)

However this flux is simply related to a certain solid angle as follows: the solid angle
subtended by dS at O is dΩ where

dΩ =
dA

r2
(2.5)
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and dA denotes the area of a spherical cap normal to E, cf. diagram. This means that we
have

dA = |dS| cos θ (2.6)

where θ is the angle between E and dS. Since we also have

r̂ · dS = |dS| cos θ (2.7)

then we have the equation

E · dS =
qi

4πǫ0
dΩ (2.8)

We now immediately integrate to obtain

∫

S

E · dS =
qi

4πǫ0

∫

S

dΩ (2.9)

But it is an elementary fact that ∫

S

dΩ = 4π (2.10)

Hence we have proved that ∫

S

E · dS =
qi

ǫ0
(2.11)

Now all we have to do is to sum both sides of 2.11 over i so as to include all charges; all
this does is to replace the qi on the RHS by the total charge Q giving us the desired result

∫

S

E · dS =
Q

ǫ0
(2.12)

and the proof is complete.

§ 2. Maxwell’s first equation and Poisson’s equation

We are now ready to derive Maxwell’s first equation which is simply

∇ · E =
ρ

ǫ0
(2.13)

One starts with Gauss’s flux theorem

∫

S

E · dS =
Q

ǫ0
(2.14)

then we suppose that the charge Q comes totally from charge inside, or on the surface of, a
closed volume V whose boundary is the surface S above. This means that, if ρ is the charge
density per unit volume, then

Q =

∫

V

ρ dV (2.15)
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so that we have immediately that

∫

S

E · dS =
1

ǫ0

∫

V

ρ dV (2.16)

Gauss’s divergence theorem applied to the LHS then yields the equation

∫

V

∇ · E dV =

∫

V

ρ

ǫ0
dV (2.17)

But since the volume V is arbitrary then the integrands on both sides of 2.17 must be equal;
hence we have

Maxwell’s
first equa-
tion∇ · E =

ρ

ǫ0
, Maxwell’s first equation (2.18)

as desired.
If we write this equation in terms of the potential V rather than the electric field E

then the equations that we get is called Poisson’s equation: recalling that

E = −∇V (2.19)

we substitute for E in 2.17 and obtain an equation for V which is

∇ · (−∇V ) =
ρ

ǫ0

⇒ ∇2V = −
ρ

ǫ0

(2.20)

Poisson’s equation is the last of the two equations above, that is the following equation for
V

∇2V = −
ρ

ǫ0
, (Poisson’s equation) (2.21)

§ 3. Gauss’s theorem at work

Gauss’s theorem is a very useful tool for calculating the electric field in a variety of situations.
We shall now consider some examples of this.

Example The electric field due to a sphere of charge

Our task now is to compute the electric field created by a sphere of charge, where the total
charge on the sphere is Q. We suppose that there exists a solid sphere of charge, of radius a
and centre O; we then wish to calculate the electric field E at an arbitrary point P where P
is a distance r from O. We also assume that r > a so that P is a point outside the sphere.
Later we shall show how to compute E when P is inside the sphere.

The technique used is just a judicious use of Gauss’s theorem

∫

S

E · dS =
Q

ǫ0
(2.22)
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The key matter is to choose the right surface S over which to integrate E. We take S to be
a sphere of radius r and centre O so that it is concentric to the sphere of charge.

Now we can deduce that spherical symmetry demands that E be radial on the surface
of S, i.e. E is parallel to dS on S since dS, by definition, is always radial. Hence we have

∫

S

E · dS =

∫

S

|E||dS| (2.23)

But all points on S are equidistant from O so |E| must be constant on S, therefore we can
write ∫

S

|E||dS| = |E|

∫

S

|dS|

= |E|4πr2

(2.24)

where we have used the obvious fact that
∫

S
|dS| is just the total surface area of S. We

have now deduced that

|E|4πr2 =
Q

ǫ0
(2.25)

and since we already know that E is radial we have the complete expression for E which is

E =
Q

4πǫ0

r̂

|r|2
(2.26)

It is noteworthy that this expression expresses the eminently reasonable fact that a sphere
of charge behaves as if all the charge is concentrated at its centre.

Example The electric field inside a hollow charged closed conductor

Now let us take a hollow conductor and place an arbitrary charge distribution on its
surface. Provided we consider points outside the conductor then this makes no difference to
calculations of the electric field which use Gauss’s theorem. However, since the conductor
is hollow we can now go inside and, for points inside, the situation is radically different. In
fact the electric field is always zero for all points inside a hollow closed charged conductor.

We shall not give a general proof 1 of the above facts but shall prove them for the case
when the conductor is spherical of radius a.

First we choose a point P outside the conductor. In this case there is nothing new to
say the field E is exactly the same as before and given by the expression

E =
Q

4πǫ0

r̂

|r|2
(2.27)

where Q is the total charge on the conductor.
Next we suppose that the point P at which we want the electric field is inside the

sphere. To this end let the distance from the centre of the sphere to P be r where r < a.

1 The general proof follows fairly easily from the fact that a solution of Poisson’s equation for the electric

field of an arbitrary charge distribution is uniquely specified by the values of the potential on some closed

surface (in this case the closed conducting surface).
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Then we choose S to be the sphere of radius r centre O and apply Gauss’s theorem from
which we obtain the result

|E|4πr2 =
Q

ǫ0
(2.28)

where E is the field at P and Q is the charge inside S. But Q has to be zero since we are
inside a hollow conductor hence we immediately deduce that

|E| = 0

⇒ E = 0
(2.29)

as claimed.

Example The electric field due to an infinite cylinder of charge

In this example we shall compute the electric field E a distance r from the axis of an
infinitely long charged cylinder of radius a; we shall assume that the cylinder carries a
charge of λ per unit length.

This is another application of Gauss’s theorem and all we have to do is to make a
sensible choice for the surface S that appears in the statement of the theorem.

Cylindrical symmetry makes it reasonable that we should choose S to be a cylinder
coaxial to the first, but of radius r and length L, and placed so that the point P lies on its
surface. We remind the reader that Gauss’s theorem requires S to be closed so that this
cylinder consists of a curved piece of area 2πrL plus two circular discs each of area πr2.

Applying the theorem we have

∫

S

E · dS =
Q

ǫ0
(2.30)

but Q must be the charge inside a length L of the charged cylinder so that

Q = λL (2.31)

Also, if we break the integral up into two natural pieces, we get

∫

S

E · dS =

∫

curved part
E · dS +

∫

two discs
E · dS (2.32)

Now cylindrical symmetry means that E must point in the radial direction; hence on the
two discs E is perpendicular to dS, while on the curved part E is parallel to dS. These two
observations mean that

∫

two discs
E · dS = 0

∫

curved part
E · dS =

∫

curved part
|E||dS|

= |E|

∫

curved part
|dS|

= |E|2πrL

(2.33)
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where, in the second integral, we have used the fact that all points on the curved side
are equidistant from the axis of the cylinder so that |E| must be constant throughout the
integral. We now have computed both the LHS and RHS of the expressions entering Gauss’s
theorem and, using these computations, we find that

|E|2πrL =
λL

ǫ0
(2.34)

We deduce at once that

E =
λ

2πǫ0

r̂

|r|
(2.35)

and it is useful to remember that the cylindrical geometry has rendered |E| proportional to
1/r rather than 1/r2.

Example The electric field due to an infinite plane of charge

Perhaps the easiest example, though it is important, is the present one where we compute
the electric field a distance d from an infinite charged plane.

Let the plane have charge σ per unit area. We shall calculate E at a point P where P
is a vertical distance d from the plane.

Select a circular disc of area A whose centre meets a perpendicular from the point P .
Then, on this disk, erect a cylinder, with base of area A, which extends a height d above

the plane and also a height d below it. This closed cylinder is chosen to be the surface S for
Gauss’s theorem. We note that left–right symmetry of the infinite plane forbids the field E

from pointing in any direction other than perpendicular to the plane. This means that the
integral over the curved part of S drops out since E is perpendicular to dS there. More
precisely we find that

∫

S

E · dS =

∫

two discs
E · dS

=

∫

two discs
|E||dS|

= |E|

∫

two discs
|dS|

= |E|2A

(2.36)

Hence we have

|E|2A =
Q

ǫ0
(2.37)

where Q is the charge on the disc of area A. So, if we let σ be the density of charge per
unit area on the plates, then we deduce at once that

|E|2A =
σA

ǫ0

⇒ |E| =
σ

2ǫ0

⇒ E =
σ

2ǫ0
n

(2.38)
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where n is a unit vector perpendicular to the plate.
We draw attention to the fact that E has been found to be independent of the distance

d that the point P is from the plate. This artificial result is only because we have taken an
infinite rather than a finite plate; nevertheless our result is still numerically reasonable for
finite plates with P subject to the following restrictions: P is opposite the plate, not near
any of its edges but a horizontal distance h away from the nearest edge with

d/h << 1 (2.39)



CHAPTER III

Charges in motion: electric currents

§ 1. Electric currents and resistance

W
E are now ready to depart from the realm of electrostatics and to consider moving

charges. Among other things this will allow us to discuss electric currents for the
first time and we shall do this now.

When an electric current moves in a conductor such as a copper wire, for example,
there is one conduction electron per copper atom and this large number of electrons makes
it useful to define a vector J known as the current density cf. Fig. 1. below. So we now
have the following definition.

Definition (Current density J) The current density J is a vector whose direction coincides

with that of the velocity vector v of the conduction electrons in the conductor. Its magnitude

is given by the amount of charge crossing a unit area within the conductor per unit time.

J

v
v v

Fig. 1: Inside a conductor: electrons and the current density

We can easily find an expression for J and we now proceed to do just that: Let there
be N electrons per unit volume inside the conductor then, in unit time, the electrons that
cross a unit area travel a distance |v| (since they have velocity v). Thus they trace out a
cylinder of length |v| and base of unit area. The volume of this cylinder is therefore just

|v| × 1 = |v| (3.1)
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Hence the number of (conduction) electrons in this cylinder is precisely

N × |v| = N |v| (3.2)

and this means that the total charge in this cylinder is got by multiplying by e, where e is
the electric charge; so this charge is

eN |v| (3.3)

But this number is, by the definition of J above, equal to the magnitude of J so we have
deduced that

|J| = eN |v| (3.4)

Finally the direction of J coincides with that of v so that the completed expression for the
current density J is

J = eNv (3.5)

The electron velocity vector v is usually referred to as the drift velocity of the electrons;
this is because in most situations it has a rather small magnitude, we shall demonstrate this
shortly in an example below.

Now the electric current I through any surface S is defined as follows:

Definition (Electric current I) The electric current I through any surface S is defined to

be the charge Q passing through S per unit time, i.e.

I =
dQ

dt
(3.6)

Also I is measured in amps.

Now if we take S to be the total cross section of a conductor, such as a copper wire,
we see that I and J are related by integration over S giving us the equation

I =

∫

S

J · dS (3.7)

This brings us to the point where we can examine some of the details of the passage of
current through a piece of conducting wire.

Example The drift of electrons through a uniform straight copper wire

Suppose that we pass a current of I amps through a uniform copper wire of cross sectional
area A. Applying what we have just learned we write

I =

∫

S

J · dS

=

∫

S

Nev · dS

(3.8)

But in a straight wire v will be parallel to dS giving

v · dS = |v||dS| (3.9)
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and we obtain the result that

I =

∫

S

Ne|v||dS|

= Ne|v|

∫

S

|dS|, since N , e and |v| are all constants

⇒ I = Ne|v|A, where A is the cross sectional area of the wire

(3.10)

Now we can put in some typical numbers and see how small the drift velocity |v| actually
is. Let

I = 1.5 amps, A = 1 square mm = 10−6m2 (3.11)

Further we know that, for copper,

N = 8 × 1028, electrons per m3 (3.12)

and the charge e on an electron is given by

e = 1.6 × 10−19coul. (3.13)

Hence since we can deduce from 3.10 that

|v| =
I

NeA
(3.14)

we find that

|v| =
1.5

8 × 1028 × 1.6 × 10−19 × 10−6
, m/sec

⇒ |v| ≃ 10−4, m/sec

(3.15)

which is indeed small justifying the name drift velocity for |v|.
Continuing in our examination of the inner workings of a copper wire we now turn to

the celebrated Ohm’s law.

§ 2. Ohm’s law

If a conductor has a potential V applied to it, causing a current I to flow, then this potential
difference creates an internal electric field E where E = −∇V . For most conductors this
internal field E and the current density J are parallel. In other words, inside the conductor,
one has 1

J = σE, σ a constant (3.16)

This constant σ is called the conductivity of the conductor and its units of measurement are
ohm−1 m−1; for copper one has

σ = 5.9 × 107 ohm−1 m−1 (3.17)

1 This equation J = σE is sometimes referred to as Ohm’s law as well as the more familiar equation

V = RI; we shall see below that the former implies the latter so that there is some justification in such a

nomenclature.
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The inverse of σ is also used; it is denoted by ρ and is called the resistivity so that we can
write

ρ =
1

σ
(3.18)

Example A wire of length L and cross section A

Consider a wire of length L and cross sectional area A to which a potential difference V is
applied. The potential V produces an internal electric field E and the two are related by

V =

∫ L

0

E · dl = |E|

∫ L

0

|dl|, since E is parallel to dl

⇒ V = |E|L

(3.19)

Also I is related to J by

I =

∫

S

J · dS

= σ

∫

S

E · dS, using 3.16

⇒ I = σ|E|A

(3.20)

But since V = |E|L then we can write

I =
σV A

L

⇒ V =

(
L

σA

)
I

(3.21)

hence we have deduced the familiar version of Ohm’s law

V = RI

with R =
L

σA

(3.22)

We recognise R as the resistance of the material; its units of measurement are Ohms which
are denoted by Ω. It useful to note that

R ∝
1

A
(3.23)

but, by contrast,

R ∝ L (3.24)

It is useful to be aware of the conductivities of some of the more common substances
in the world and we provide a table below.
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Material Conductivity

Copper 5.9 × 107

Gold 4.1 × 107

Germanium 2.2 (semiconductor)
NaCl solution 23.0
Glass 10−10—10−14 (insulator)
Quartz 1.3 × 10−18 (piezo-electric effect)
Wood 10−8—10−11

Conductivity table for substances (2930K).

§ 3. The power dissipated in a wire

It is of great importance to be able to calculate the power dissipated by the passage of a
current through a wire,

This is not difficult to do and one proceeds as follows: The force F on a charge q placed
in an electric field E is given by

F = qE (3.25)

If this force F moves this charge a distance |dl| in the direction dl then the work done is

F · dl = qE · dl (3.26)

hence the total work done in moving the charge along a path Γ is given by

∫

Γ

qE · dl = q

∫

Γ

E · dl

= −qV, since V = −

∫

Γ

E · dl, (cf. 1.29)

(3.27)

and we remind the reader that V is the voltage difference between the two ends of the path
Γ. Next we apply this little piece of work to a current carrying wire.

Let a voltage difference V be applied to a wire of resistance R producing a current I.
Then each charge q making up the current of the wire has an amount of work W done on
it so that the total work done on the charges in the wire is W where

W =
∑

charges

−qV

= −QV, (where Q =
∑

charges

q)
(3.28)

Now the sign of the voltage difference V is arbitrary, since we have not said which end of
the wire is which; so, for convenience, we shall change V to −V and this means that the
work done on all the charges in the wire is now

QV (3.29)
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But this work done comes from the internal energy in the voltage source—e.g. the chemical
energy of a battery—so if U denotes the internal energy of the charges in the wire then we
know that

U = QV (3.30)

The rate of change of U with time is the energy consumed per unit time by the passage
of the current—i.e. it is the power dissipated. If we denote the power dissipated by P then
we have

P =
d

dt
(QV )

=
dQ

dt
V, assuming V is constant

= IV, since I =
dQ

dt
⇒ P = V I

(3.31)

But since Ohm’s law says that V = RI we can use Ohm’s law to obtain three completely
equivalent expressions for P and these are

P = V I

P =
V 2

R

P = I2R

(3.32)



CHAPTER IV

Magnetic fields

§ 1. Magnetic fields and Maxwell’s second equation

T
HE forces between magnetic poles obey an inverse square law just as is the case
for electric charges. This means that the magnetic field B obeys a flux law similar
to that for electric fields E. Recall that for electric fields the inverse square law

leads directly to Gauss’s dielectric flux theorem which states that, for a closed surface S
containing a total charge Q, the flux of E through S satisfies

∫

S

E · dS =
Q

ǫ0
(4.1)

Hence for magnetic fields the inverse square law says that, for a closed surface S containing
a total magnetic charge QM , the flux of B through S satisfies

∫

S

B · dS =
QM

C
(4.2)

where C is some constant which is the magnetic equivalent of ǫ0. However experimentally

it is found that all magnetic charges occur in equal and opposite pairs. This is often stated
as the fact that no magnetic monopoles have ever been discovered. The conclusion that
one draws from this is that the total amount of magnetic charge inside a surface is always
exactly zero i.e. we always have

QM = 0 (4.3)

But this means that ∫

S

B · dS = 0 (4.4)

and so applying Gauss’s divergence theorem to V , the volume contained inside S, we have

∫

S

B · dS =

∫

V

∇ · B dV

⇒

∫

V

∇ · B dV = 0

⇒ ∇ · B = 0, since V is arbitrary

(4.5)
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This last result is very important as it is the second of Maxwell’s four equations. Empha-
sising this we write

∇ · B = 0, Maxwell’s second equation (4.6)

Just to summarise, the two (of the four) Maxwell equations that we have derived so far
are

Maxwell’s
first two
equations∇ · E =

ρ

ǫ0
, Maxwell’s first equation

∇ · B = 0, Maxwell’s second equation
(4.7)

We shall come to the last two in due course.
Another vital experimental fact is that which tells one how a moving charge is acted

on by a magnetic field. This action is usually called the Lorentz force law. More formally
we have 1

The Lorentz
force law
shows how
a magnetic
field exerts
a force on
a moving
charge

Lorentz force law A charge q which moves with velocity v in a magnetic field B experiences

a force F, known as the Lorentz force, where

F = qv × B (4.8)

§ 2. Electric currents produce magnetic fields: Ampère’s Theorem

A key result—due to Ampère—which helps one to measure and calculate the magnetic field
B that is created when a current I passes through a wire is called Ampère’s law (or Ampére’s
theorem) and its formal statement is;

Ampère’s law or theorem Let a current I pass through a wire thereby producing a mag-

netic field B. Then if C is a closed curve we have the fact that

∫

C

B · dl =

{
µ0NI, if C links N times with the wire

0, otherwise
(4.9)

Ampère’s law is as useful for calculating magnetic fields as Gauss’s dielectric flux the-
orem is for calculating electric fields. The most fruitful way to appreciate the importance
of this result is to use it to obtain the magnetic field in a specific example. Let us now do
this. Here is our first example.

Example The magnetic field due to a long straight current carrying wire

Let P be a point which is a perpendicular distance r from an infinite wire through which
is passing current I; we want to calculate the magnetic field B at P . Since we wish to use
Ampère’s theorem we must first select a curve C around which to integrate the magnetic
field B; we choose C to be circle of radius r = |r| with its centre on the wire cf. Fig. 2.

1 We shall use the Lorentz force law later when we derive Maxwell’s third equation.
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r

I
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P
C

, , , , , , 

Fig. 2: The magnetic field produced by an infinite straight wire

Since this circle links the wire precisely once we have

∫

C

B · dl = µ0I (4.10)

Now we assume 2 that experiment has shown us that the magnetic lines of force are circles
centred on the wire. This means that the B vectors are tangential to the curve C; but so
are the dl vectors by their definition—i.e. B and dl are parallel. Hence

B · dl = ||B||dl| (4.11)

Now we can evaluate the integral for, using this parallelism, we have

∫

C

B · dl =

∫

C

||B||dl|

= |B|

∫

C

|dl|, since |B| is constant on C

= |B|2πr

(4.12)

where we explain that B is constant on C since all points on C are the same perpendicular
distance r from the wire; also we used the fact that

∫
C
|dl| is just the total length of C—i.e.

the circumference 2πr of the circle. Finally Ampère’s law tells that the integral is equal to
µ0I so we can say that

|B|2πr = µ0I

⇒ |B| =
µ0I

2πr

(4.13)

Thus, since we know that B is tangential to C, we let e denote a unit vector tangent to the
curve C and the complete expression for the magnetic field B at P is now

B =
µ0I

2πr
e (4.14)

2 We shall redo this calculation without this assumption in the next section using the more powerful

(but not always needed) Biot-Savart law.
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We move on to another example, this one involves a solenoid.

Example The magnetic field inside an infinite solenoid

This time we pass a current I through an infinitely long solenoid—cf. Fig. 3 for a picture
of a short piece of the solenoid viewed from a skew angle.

Fig. 3: A loosely wound solenoid

If we move round exactly perpendicular to the axis of the solenoid and stretch it out
somewhat it will then look as shown in Fig. 4 below.

I

Fig. 4: A loosely wound solenoid carrying a current I

The current I produces a magnetic field B. We want an expression for the field B at
the point P where P is a point on the axis of the solenoid. We are going to use Ampère’s
theorem and so must choose a curve C and then integrate B around C. We choose C to be
the rectangle EFGH, cf. Fig. 5.
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I

E F

C

GH

Fig. 5: The solenoid and the rectangular path C
Next we must specify how tightly the solenoid is wound and so we define the integer

N by saying that N is the number of turns per unit length of the solenoid. In addition we
wish to specify the width of the rectangle, i.e the length of the line EF ; we shall denote the
length of EF by L.

We note, now. that all this means that the line EF , having length L, passes through
exactly

NL (4.15)

turns of the solenoid. This in turn means that Ampère’s theorem applied to the curve C
gives the result that ∫

C

B · dl = µ0NLI (4.16)

since the rectangle is linked with all the NL turns passed through by the line EF .
The final short task that we have is to evaluate the integral

∫
C

B · dl. The key to doing
this is comprised of two observations and these are
(i) The integral

∫
C

B · dl is independent of the length FG of C; hence we may make this
length as large as we like.

(ii) Axial symmetry of an infinitely long object, such as this solenoid, means that the
magnetic field B must point along the axis of the solenoid. This then means that B is
perpendicular to the dl vectors on the two vertical sides of C: namely the sides GF and
EH. To use these observations we first decompose the integral into four pieces—one
for each side of the rectangle—giving

∫

C

B · dl =

∫

HG

B · dl +

∫

GF

B · dl +

∫

FE

B · dl +

∫

EH

B · dl (4.17)

Now, because of the perpendicularity mentioned in (ii) above, the integrals along the
sides GF and EH vanish, so we have

∫

GF

B · dl =

∫

EH

B · dl = 0 (4.18)

Also, exploiting point (i) above, we make the length GF tend to infinity this make B

tend to zero along HG so the integral for this side vanishes giving
∫

HG

B · dl = 0 (4.19)
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All that remains of the integral around C is the portion FE; but this portion is along
the axis where B is parallel to the dl vectors. Hence we can immediately compute that

∫

FE

B · dl =

∫

FE

|B||dl| = |B|

∫

FE

|dl| = |B|L (4.20)

So the upshot of doing these four integrals, when combined with 4.16, is that
∫

C

B · dl = |B|L = µ0NLI

⇒ |B| = µ0NI

(4.21)

This gives us the magnitude of the field B inside the solenoid, but we already know that B

point along the axis of the solenoid; hence, if e denotes a unit vector along the axis of the
solenoid, our final result for B is that

B = µ0NIe (4.22)

§ 3. The Biot–Savart law

The Ampère law can sometimes not yield an easy route to the calculation of the magnetic
field produced by a current carrying wire. When this is so there is a more powerful result
that one can have recourse to; this result is called the Biot–Savart law and it is the following
statement.

Biot-Savart law Let a current I pass through a wire thereby producing a magnetic field B.

Then if dl is an element of length along the wire, located at r′, it produces a field dB at the

point r where

dB =
µ0I

4π

dl × (r − r′)

|r − r′|3
(4.23)

The best way to understand this law is to move straight on to an example. We shall work
through two examples as illustrations of the Biot–Savart law; as our first example we shall
redo the calculation of the field B due to a straight wire that we computed using Ampère’s
law.

Example The magnetic field due to a long straight current carrying wire redone using the

Biot–Savart law

We shall take the wire to coincide with the x′-axis, cf. Fig. 6 (note that we have to call
this axis the x′-axis rather than the x-axis because we have already used the variable x in
the expression for the vector r which we recall is given by r = xi + yj + zk), so that

dl = dx′i (4.24)

In addition we shall choose (without any loss of generality) the point r to lie in the x − z
plane. With these notational conventions we have

r′ = x′i, r = xi + zk (4.25)
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Fig. 6: The straight wire for the Biot-Savart calculation
It is now straightforward to calculate that

|r − r′| =
√

(x − x′)2 + z2 (4.26)

and that
dl × (r − r′) = dx′i × {(x − x′)i + zk}

= zdx′i × k = −zdx′j
(4.27)

So now we have

dB(r) = −
µ0I

4π

zdx′

{(x − x′)2 + z2}3/2
j (4.28)

The last step in the calculation is to integrate dB: we have

B(r) = −
µ0Iz

4π
j

∫
∞

−∞

dx′

{(x − x′)2 + z2}3/2
(4.29)

Evaluating the integral is routine enough: we make the substitution

x − x′ = z tan(θ)

⇒ dx′ = −z sec2(θ)dθ
(4.30)

and then we find that
∫

∞

−∞

dx′

{(x − x′)2 + z2}3/2
= −

∫ π/2

−π/2

dθ
z sec2(θ)

z3 sec3(θ)

= −
1

z2

∫ π/2

−π/2

dθ

sec(θ)
= −

1

z2

∫ π/2

−π/2

dθ cos(θ)

= −
2

z2

(4.31)

The resulting expression for B is given by

B(r) =
µ0I

2πz
j (4.32)
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and this is in complete agreement with the expression 4.14 obtained using Ampère’s law
except that in 4.14 the variable z was denoted by r and the unit vector e is here identified
as j.

Example The magnetic field at the centre of a circular loop carrying a current I

Let a current I pass through a closed wire which is bent into a circular shape, the circle
having a radius R. We want to calculate the magnetic field B produced at the centre of the
circle.

The basic Biot–Savart expression for the field due to the element of wire dl is

dB =
µ0I

4π

dl × (r − r′)

|r − r′|3
(4.33)

Now we choose the wire to lie in the x − z plane so that the centre of the circle coincides
with the origin of the coordinate system. This has the great simplification that the point
r at which we want to calculate B is the zero vector—i.e. we have

r = 0 (4.34)

This means that dB is now of the form

dB = −
µ0I

4π

dl × r′

|r′|3
(4.35)

Now the vector r′ lies on the circle of radius R so it is given by the formula

r′ = R cos(θ)i + R sin(θ)k (4.36)

from which we see immediately that
|r′| = R (4.37)

Hence

dB = −
µ0I

4π

dl × (R cos(θ)i + R sin(θ)k)

R3
(4.38)

Now the derivative
dr′

dθ
(4.39)

has to be tangential to the circle at the point r′ so the vector dl, which is also tangent at
the same point, but has length Rdθ, is given by

dl =
dr′

dθ
dθ

= (−R sin(θ)i + R cos(θ)k)dθ

= R(− sin(θ)i + cos(θ)k)dθ

(4.40)

So, putting all this together, we have

dB = −
µ0I

4π

R (− sin(θ)i + cos(θ)k) dθ × (R cos(θ)i + R sin(θ)k)

R3
(4.41)
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Tidying up, and doing the cross products, we find that

dB = −
µ0I

4πR

(
sin2(θ)j + cos2(θ)j

)
dθ

= −
µ0I

4πR

(
sin2(θ) + cos2(θ)

)
jdθ

= −
µ0I

4πR
jdθ

(4.42)

It is now a trivial matter to integrate and obtain

B =

∫
dB

= −

∫
2π

0

µ0I

4πR
jdθ

= 2π

⇒ B = −
µ0I

2R
j

(4.43)

and so our calculation is complete; note, before leaving this example, that |B| ∝ 1/R.

An equation for ∇× B

We are now in a position to derive a useful equation for ∇×B which will turn out later to
be a stepping stone to Maxwell’s fourth equation. The equation we are after is

∇× B = µ0J (4.44)

To derive it we start with a curve C encircling a current carrying wire just once; this
means that Ampère’s law says that

∫

C

B · dl = µ0I (4.45)

But, if S is the surface interior to C, and J is the current density, then I is given by

I =

∫

S

J · dS (4.46)

Inserting this into Ampère’s law gives
∫

C

B · dl = µ0

∫

S

J · dS (4.47)

where I is the current carried by the wire. But applying Stokes’ theorem to the B integral
we then obtain ∫

S

∇× B·dS = µ0

∫

S

J · dS (4.48)

Finally, since the surface S is arbitrary—except that it must be cut by the wire—we find
that the integrands are equal, i.e. we have the desired result

∇× B = µ0J (4.49)
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Maxwell’s third and fourth equations

§ 1. Electromagnetic induction and Maxwell’s third equation

W
E now begin a discussion which will end with the derivation of Maxwell’s third
equation. As a prerequisite we recall the Lorentz force law quoted on p. 22 which
told us us how a magnetic field acts on a moving charge. Here, once again, is the

formal statement of the law:

Lorentz force law A charge q which moves with velocity v in a magnetic field B experiences

a force F, known as the Lorentz force, where

F = qv × B (5.1)

We turn now to electromagnetic induction. The great experimentalist Faraday discov-
ered that if one takes a closed loop of wire through which no current is passing then, if one
moves the loop in a magnetic field B, a current I can be induced.

Let the loop of wire enclose a surface S, then as the loop moves the magnetic flux∫
S
B · dS changes with time. Faraday’s very ingenious and careful experiments established

that the voltage 1 E , producing this current is related to the rate of change of the magnetic
flux Φ by the equation

E = −
∂

∂t

∫

S

B · dS

i.e. E = −
∂Φ

∂t

(5.2)

We shall now use the Lorentz force to rederive Faraday’s result and to derive Maxwell’s
third equation which happens to be

∇× E = −
∂B

∂t
(5.3)

Let us take a rectangular loop ABCD placed in a constant magnetic field B which is
perpendicular to the plane of the rectangle so that is parallel to the dS vector. In addition

1 E is also often called an emf, this stands for the term electromotive force
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we want the side AB to be moveable and be able to slide along at a constant speed v cf.
Fig. 7.

w

L

vB

I 

C

D
A

B

Fig. 7: The rectangular loop with the moving side

Now, since B is constant and perpendicular to the rectangle, the flux Φ through this
loop is just |B| times the area of the loop, so that we have

Φ =

∫

S

B · dS = |B|wL (5.4)

the area of the loop being wL. Further if we differentiate Φ with respect to t, and notice
that

dL

dt
= |v| (5.5)

since the side AB is moving with velocity v, then we see at once that

∂Φ

∂t
= |B|w|v| (5.6)

Next note that the electrons in the moving side AB are moving (with velocity v) in a
magnetic field and so are subject to the Lorentz force law. They receive, therefore, a force

F = ev × B (5.7)

But this force is the same as if they were subject to an electric field E given by the expression

E = v × B (5.8)
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and such an electric field would be produced by applying a potential difference E across the
ends of AB where 2

E =

∫

AB

v × B · dl (5.9)

However v, B and dl are all constant and mutually perpendicular so we have immediately
the result that 3 ∫

AB

v × B · dl = −|v||B|w

i.e. E = −|v||B|w

(5.10)

Now if we compare equations 5.6 and 5.10 for Φ and E respectively we find that we do
indeed have

E = −
∂Φ

∂t
(5.11)

in agreement with Faraday’s experimental law.
Since the other three sides of the rectangle do not move, we can change the expression

for E to be an integral all the way around the rectangle and not just along the side AB; we
shall do this and, denoting the rectangle ABCD by just C, we have

E =

∫

C

E · dl (5.12)

Maxwell’s equation follows from being more formal and writing

Φ =

∫

S

B · dS, and E =

∫

C

E · dl (5.13)

With this notation 5.11 becomes

∂

∂t

∫

S

B · dS = −

∫

C

E · dl

⇒

∫

S

∂B

∂t
·dS = −

∫

C

E · dl

⇒

∫

S

∂B

∂t
·dS = −

∫

S

∇× E · dS, by Stokes’ theorem

⇒ ∇× E = −
∂B

∂t
, since S is arbitrary

(5.14)

and so we have the third of Maxwell’s four equations. Stating it again for emphasis, it is
the equation

2 Note that the convention is to define E =
∫

AB
E · dl rather than E = −

∫
AB

E · dl so that E is actually

the opposite sign to what we normally call a voltage.
3 To get the signs on the RHS work out you have choose B ‘perpendicular and upwards’ to ABCD and

recall that dl points from A to B; this means that the direction of E = v × B is opposite to that of dl.

Other choices can be made but the final result will be unaltered.
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Maxwell’s
third equa-
tion∇× E = −

∂B

∂t
(5.15)

We turn at once to the derivation of the fourth and last Maxwell equation.

§ 2. Maxwell’s fourth equation—the story of the displacement current

Maxwell’s fourth equation involves the quantity ∇ × B; now we have already obtained an
equation for ∇× B namely

∇× B = µ0J (5.16)

however we shall now see that this equation is incomplete. It is the corrected, or completed,
form of this equation that we are after.

Let us see what is wrong with

∇× B = µ0J (5.17)

First take the divergence of both sides yielding

∇ · ∇ × B = µ0∇ · J (5.18)

But ∇ · ∇ × B = 0 since ∇ · ∇ × A = 0 for any A. Hence we have deduced that

∇ · J = 0 (5.19)

Unfortunately this deduction is a disaster, and is definitely mistaken, since it contradicts
the extremely well established experimental fact that charge is conserved. We now have to
put this right.

Suppose, then, that the density of charge inside an arbitrary volume V is ρ and that
the charges are inside V are not static but in motion giving rise to a current density J. Now
some charges may flow out across the surface S of V and escape thus reducing the total
charge Q of V . The corresponding decrease in Q per unit time is therefore

−
dQ

dt
(5.20)

This outward flow is a current I across the surface S and we know that

I =

∫

S

J · dS (5.21)

But I is also a measured in units of charge per unit time and, since charge is conserved,
this current must be equal to the decrease in charge of V . In other words we must have

−
dQ

dt
=

∫

S

J · dS (5.22)

But we can express Q in terms of the charge density ρ by writing

Q =

∫

V

ρdV (5.23)
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so we have

−
∂

∂t

∫

V

ρ dV =

∫

S

J · dS

⇒ −

∫

V

∂ρ

∂t
dV =

∫

S

J · dS

(5.24)

But Gauss’s divergence theorem applied to J says that
∫

S

J · dS =

∫

V

∇ · J dV (5.25)

and so we find that

−

∫

V

∂ρ

∂t
dV =

∫

V

∇ · J dV

⇒

∫

V

{
∇ · J +

∂ρ

∂t

}
dV = 0

⇒ ∇ · J +
∂ρ

∂t
= 0, since V is arbitrary

(5.26)

and this equation expresses the conservation of charge. So we see that, rather than having
∇ · J = 0 we have

∇ · J = −
∂ρ

∂t
(5.27)

Our strategy now is to add a term to our equation for ∇× B and to try and derive the
form of this term from what we know already. To this end we denote this added term by
JD and call it (following the common practice) the displacement current; the equation for
∇× B then becomes

∇× B = µ0 J + JD (5.28)

Proceeding as before we take the divergence of both sides giving

∇ · ∇ × B = µ0∇ · J + ∇ · JD

⇒ 0 = µ0 ∇ · J + ∇ · JD

⇒ 0 = −µ0

∂ρ

∂t
+ ∇ · JD. using 5.27

(5.29)

Here we take time off to point out that experimentally 4 it is found that the constant µ0 is
related to the constant ǫ0; in fact one knows that

µ0 =
1

ǫ0c2
(5.30)

4 For the record this was work done in 1856 by Weber and Kohlrausch—cf. Weber, W., Kohlrausch,

R., Über die Elektrizitätsmenge, welche bei galvanischen Strömen durch den Querschnitt der Kette flieβt,

Poggendorffs Annalen, 99, 10–25, (1856)—this result of course strongly suggests that light has something

to do with electromagnetic phenomena; however the velocity of light was not known all that well in 1856

though it had become much more accurately determined by the year 1864: the year when Maxwell did his

famous work, cf. below.
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where c is the velocity of light in vacuo. In any case we now have an equation for the
displacement current JD, it is simply that

∇ · JD =
1

ǫ0c2

∂ρ

∂t
(5.31)

Now we integrate both sides of this equation over the volume V giving

∫

V

∇ · JD dV =
1

ǫ0c2

∫

V

∂ρ

∂t
dV (5.32)

But we know from Gauss’s divergence theorem that

∫

V

∇ · JD dV =

∫

S

JD · dS (5.33)

and from Maxwell’s first equation that

∇ · E =
ρ

ǫ0

⇒ ρ = ǫ0∇ · E
(5.34)

Using both these facts we get

∫

S

JD · dS =
1

ǫ0c2

∫

V

ǫ0
∂(∇ · E)

∂t
dV

⇒

∫

S

JD · dS =
1

c2

∂

∂t

∫

V

∇ · E dV

⇒

∫

S

JD · dS =
1

c2

∂

∂t

∫

S

E · dS, (Gauss’s divergence theorem)

⇒

∫

S

JD · dS =

∫

S

1

c2

∂E

∂t
· dS

(5.35)

Then, as usual, since S is arbitrary we conclude that

JD =
1

c2

∂E

∂t
(5.36)

and we have successfully found the displacement current JD. This means that the correct
equation for ∇× B, which is Maxwell’s fourth equation is

Maxwell’s
fourth equa-
tion∇× B =

1

ǫ0c2
J +

1

c2

∂E

∂t
(5.37)

So we now have all four of Maxwell’s equations.
In the next section we shall make some comments on each equation and examine the

displacement current term a little more closely.
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§ 3. Maxwell’s four equations

The four Maxwell equations should now be viewed together and some thought given to how
they were derived. To this end the four equations are listed below with each accompanied
by a short relevant comment relating to their origins.

Maxwell’s
celebrated
four equa-
tions

∇ · E =
ρ

ǫ0
, (Coulomb’s law)

∇ · B = 0, (absence of magnetic monopoles)

∇× E = −
∂B

∂t
, (electromagnetic induction)

∇× B =
1

ǫ0c2
J +

1

c2

∂E

∂t
, (displacement current)

(5.38)

Example The displacement current term in action

The displacement current’s rôle in electromagnetic phenomena can be quite subtle; because
this is so we now present an example of the working of this term

1

c2

∂E

∂t
(5.39)

We take a spherically symmetric situation. Let us have a radioactive β-source in the
centre of a containing sphere. This source simply serves as a source of electrons which, by
the spherical symmetry of the situation, are emitted outwardly along the radial directions
giving a radial current density J cf. Fig. 8.

J   

J
B

B

Fig. 8: The β-source with its radial current density J.
In Fig. 8 the dotted lines show the magnetic lines of force produced by each vector

J. Note carefully that where the a pair of such lines touch the magnetic field the will be
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cancellation between the two causing the magnetic field B to be zero there. Since such a
point of intersection could be anywhere on the sphere this suggests that B should be zero
everywhere on the sphere. This is actually the case but we shall not prove it we shall just
show that

∇× B = 0 (5.40)

which is, of course, implied by B = 0.
The point is that ∇× B is the LHS of Maxwell’s equation and so if it vanishes there

must be a cancellation between the two terms on the RHS. In other words we will have

1

c2

∂E

∂t
= −

1

ǫ0c2
J

⇒
∂E

∂t
= −

J

ǫ0

(5.41)

so that the displacement current term cannot be zero since J is, by construction, non-zero.
We proceed to the calculation.

Let the sphere have radius r so and let it contain a total charge Q(t) at time t. The
outward electrical current I from the radioactive decay is given by

I = −
∂Q(t)

∂t
(5.42)

But

I =

∫

S

J · dS = 4πr2|J| (5.43)

so we have

−
∂Q(t)

∂t
= 4πr2|J| (5.44)

However, for the electric field E, spherical symmetry says that E is the same as the field
produced by a point charge at the centre of the sphere so we have

E =
Q(t)

4πǫ0

r̂

r2

⇒ Q(t) = 4πǫ0|E|r2

(5.45)

Hence combining eqs. 5.44 and 5.45 we find that

∂
(
4πǫ0r

2|E|
)

∂t
= −4πr2|J|

⇒
∂|E|

∂t
= −

|J|

ǫ0

⇒
∂E

∂t
= −

J

ǫ0
, since E = |E| r̂ and J = |J| r̂

(5.46)

Hence we have verified that
∇× B = 0 (5.47)

which is what we wanted to do.



CHAPTER VI

Electromagnetic waves

§ 1. Wave solutions to Maxwell’s equations

I
t is now time to establish the celebrated result that both E and B satisfy wave equations
with the wave velocity being c—the velocity of light. In fact this is a simple consequence
of Maxwell’s equations so the difficult thing was to derive Maxwell’s equations in the

first place.
We start with the wave equation for the electric field E. First we set ρ and J to zero in

Maxwell’s equations giving us Maxwell’s equations in vacuo, also called Maxwell’s equations
in free space: these are the four equations

Maxwell’s
equations in
a vacuum:
they de-
scribe elec-
tromagnetic
radiation

∇ · E = 0

∇ · B = 0

∇× E = −
∂B

∂t

∇× B =
1

c2

∂E

∂t

(6.1)

Taking the curl of Maxwell’s equation for ∇× E yields

∇× (∇× E) = −∇×

(
∂B

∂t

)
(6.2)

Now we point out that there is a vector identity which states that, for any A,

∇× (∇× A) = ∇ (∇ · A) −∇2A (6.3)

Applied to E this gives, if we also use the fact that ∇ · E = 0,

∇× (∇× E) = −∇2E (6.4)

But

∇×

(
∂B

∂t

)
=

∂(∇× B)

∂t

=
1

c2

∂2E

∂t2
, on using Maxwell’s fourth equation

(6.5)
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So we have now deduced that

−∇2E = −
1

c2

∂2E

∂t2

⇒

(
∇2 −

1

c2

∂2

∂t2

)
E = 0

(6.6)

But this latter is a wave equation and shows that E travels as a wave with velocity c where
c is the velocity of light.

In an exactly similar fashion we can take the curl of Maxwell’s equation for ∇× B, use
the same vector identity on the LHS and Maxwell’s equation for ∇× E. The result is the
same wave equation for B. Just going through these steps we obtain

∇× (∇× B) =
1

c2
∇×

(
∂E

∂t

)

⇒ −∇2B =
1

c2

∂(∇× E)

∂t

⇒ −∇2B = −
1

c2

∂2B

∂t2

(6.7)

So B does indeed satisfy (
∇2 −

1

c2

∂2

∂t2

)
B = 0 (6.8)

Maxwell’s work was completed in 1864 and published in 1865; the idea that light could
be an electromagnetic wave had been made as early as 1846 by Faraday under remarkable
circumstances—cf. the remarks made in the preface to these lecture notes.

An important fact about one dimensional waves travelling, say, in the x-direction with
velocity c. is that if f(x, t) represents any function or vector which is a solution to the wave
equation so that (

∂2

∂x2
−

1

c2

∂2

∂t2

)
f(x, t) = 0 (6.9)

then
f = f(x − ct) (6.10)

is always a solution for any 1 f—we shall see below that f = f(x + ct) is also always a
solution.

Example Standing waves

A standing wave is a superposition of two waves travelling in opposite directions. For
example, in one dimension, a wave travelling with velocity c along the x-axis towards the
positive direction has x, t dependence of the form

f(x − ct) (6.11)

1 For example the reader can try f = cos(x− ct) or f = exp(x− ct) and verify by explicit differentiation

that these two functions satisfy the wave equation and so on.
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Hence the superposition
f(x − ct) + g(x + ct) (6.12)

represents two waves travelling in opposite directions and is therefore a standing wave (some-
times it is insisted that the functions g and f are the same for a standing wave). One should
also add that it is immediate that both of the above functions are solutions to the wave
equation. In other words we have

(
∂2

∂x2
−

1

c2

∂2

∂t2

)
f(x − ct) = 0

(
∂2

∂x2
−

1

c2

∂2

∂t2

)
(f(x − ct) + g(x + ct)) = 0

(6.13)

as can quickly be verified by direct differentiation.
A standing wave can often have a misleading appearance as it may be written as a

product of two functions instead of as a sum. If this is so then it can be rewritten as a sum
and, to elucidate this point, consider the following example. Suppose

f(x, t) = cos(x) cos(ct) (6.14)

It is trivial to check by differentiation that f satisfies the wave equation but to see that f
is expressible as a sum we simply observe that the trigonometric formula

cos(A) cos(B) =
1

2
(cos(A + B) + cos(A − B)) (6.15)

from which we deduce at once that

f(x, t) =
1

2
cos(x − ct) +

1

2
cos(x + ct) (6.16)

which is precisely what we wanted.

§ 2. Transversality of E and B and the property E · B = 0

We now want to show that both E and B are what are called transverse waves. A transverse
wave is one where the oscillations are perpendicular to the direction of travel so, in the
current setting, we want to show that when E and B travel as waves the vectors E and
B are perpendicular to the direction of travel. We shall carry out our discussion for 1-
dimensional waves travelling in the x-direction—this means that we assume that there is no
dependence of the wave on y and z, just a dependence on x and t.

Since ∇ · E = 0 we have

∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
= 0

⇒
∂Ex

∂x
= 0, since E is independent of y and z

⇒ Ex = C, with C a constant

(6.17)
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However, on physical grounds, we require

C = 0 (6.18)

because we wish all waves to die away at infinity and a constant field does not do this. So
we have

Ex = 0

⇒ E = Ey j + Ez k

⇒ E · i = 0

⇒ E is transverse

(6.19)

But now we rotate our coordinate system about the x-axis so that the y-axis coincides with
the direction of E, this makes Ez = 0 so that we have, finally

E = Ey j (6.20)

Next we turn our attention to B. We also have ∇ · B = 0 so, as we just did for E, we can
deduce that

Bx = C, C a constant (6.21)

and C must be zero for the same reason as we gave for E. Hence

B = By j + Bz k

⇒ B · i = 0, so B is transverse
(6.22)

Finally we want to prove that E is perpendicular to B. To do this consider the Maxwell
equation

∇× E = −
∂B

∂t
(6.23)

Using E = Ey j and B = By j + Bz k we obtain

∣∣∣∣∣∣

i j k

∂x ∂y ∂z

0 Ey 0

∣∣∣∣∣∣
= −

∂B

∂t

⇒
∂Ey

∂x
k = −

∂By

∂t
j −

∂Bz

∂t
k

(6.24)

and so we must have
∂By

∂t
= 0 (6.25)

and this allows only a constant By which we reject as before. Hence we have found that

B = Bz k (6.26)

so that E and B are indeed perpendicular.
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Summarising the various properties of wave solutions to Maxwell’s equations we have
found that both E and B are transverse and that E · B = 0. This then means that if a one
dimensional wave travels in the x-direction, with E along the y-axis, then we have

E = Ey j, B = Bz k (6.27)

giving automatically
E · B = 0 (6.28)

Example A simple electric wave

Suppose E is a constant and

E = E cos(kx − ωt) j, with k =
2π

λ
and ω = 2πν (6.29)

then E is a wave provided
λν = c (6.30)

The quantities λ and ν are called the wavelength and frequency of the wave respectively. To
verify this we simply substitute E into the wave equation 6.9 and obtain

(
∂2

∂x2
−

1

c2

∂2

∂t2

)
cos(kx − ωt) j = (−k2 +

ω2

c2
) cos(kx − ωt) j (6.31)

Hence, for E to be a solution,. we must have

k2 =
ω2

c2

⇒
(2π)2

λ2
=

(2πν2)

c2

⇒ λ2ν2 = c2

or λν = c

(6.32)

as claimed.
We can also write E in the form f(x − ct) for note that we have

E = E cos

(
2π

λ
x − 2πνt

)
j

= E cos

{
2π

λ
(x − ct)

}
j

= f(x − ct)

with f(x − ct) = E cos

{
2π

λ
(x − ct)

}
j

(6.33)
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§ 3. The flow of energy for electromagnetic waves

We wish, in this section, to pin down the energy properties of electromagnetic waves and
discover how they can flow through a vacuum as radiation. We shall find that Maxwell’s
equations do, more or less, all this for us.

We begin with Maxwell’s equation

∇× B =
1

ǫ0c2
J +

1

c2

∂E

∂t
(6.34)

which we rewrite as

J = ǫ0c
2∇× B − ǫ0

∂E

∂t
(6.35)

Dotting with E gives

E · J = ǫ0c
2E · ∇ × B − ǫ0E ·

∂E

∂t

= ǫ0c
2E · ∇ × B −−

ǫ0
2

∂

∂t
(E2)

(6.36)

But using the vector identity

∇ · (A × B) = B · ∇ × A − A · ∇ × B (6.37)

on E and B in the form

E · ∇ × B = −∇ · (E × B) + B · ∇ × E (6.38)

we get

E · J = −ǫ0c
2∇ · (E × B) + ǫ0c

2B · ∇ × E −
ǫ0
2

∂

∂t
(E2) (6.39)

However

∇× E = −
∂B

∂t
(6.40)

and making this substitution on the RHS of the expression for E · J we find that

E · J = −ǫ0c
2∇ · (E × B) − ǫ0c

2B ·
∂

∂t
(B) −

ǫ0
2

∂

∂t
(E2)

= −ǫ0c
2∇ · (E × B) −

ǫ0c
2

2
·

∂

∂t
(B2) −

ǫ0
2

∂

∂t
(E2)

= −ǫ0c
2∇ · (E × B) −

ǫ0
2

∂

∂t

(
E2 + c2B2

)

(6.41)

Hence if we define the vector S and the scalar u by writing

S = ǫ0c
2(E × B), u =

ǫ0
2

(
E2 + c2B2

)
(6.42)

then E · J satisfies the equation

E · J = −∇ · S −
∂u

∂t
(6.43)
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To understand the physical meaning of this result we integrate both sides over an arbitrary
volume V obtaining

∫

V

E · J dV = −

∫

V

∇ · S dV −
∂

∂t

∫

V

u dV (6.44)

Now u has the dimension of energy per unit volume—i.e. it has the dimensions of an energy

density—so we write this equation as

−
∂

∂t

∫

V

u dV =

∫

S

S · ds +

∫

V

E · J dV (6.45)

where we also used Gauss’s divergence theorem on the S integral. But the LHS of 6.45 is
identifiable as the decrease per unit time of the total energy in V and

∫
V

E · J dV is the
work done on any charges inside V . Hence, conservation of energy means that the term

∫

S

S · ds (6.46)

must represent the flow inwards or outwards of any energy entering or leaving V across its
surface.

In fact u is the energy density of the radiation of the electromagnetic field and S is
called Poynting’s vector. The physical interpretation of Poynting’s vector 2 is that the flow
of energy per unit area, per unit time, in a direction n, where n is a unit vector is given by

S · n (6.47)

Note that S points in the direction of travel of the wave so that the flow of energy is in the
right direction.

The reader should also be able to see by now that an electromagnetic wave is a pair of
waves, one electric and one magnetic, simultaneously travelling with the velocity of light;
further both waves are transverse and one is perpendicular to the other. What we have really
done here—and this is really very important and a great triumph of Maxwell’s equations—is
to elucidate fully the electromagnetic nature of any light wave.

In sum then the energy properties of the waves making up E and B are

u =
ǫ0
2

(
E2 + c2B2

)
, (the energy density)

S · n, (the flow of energy/m2/s in direction n (n2 = 1))

where S = ǫ0c
2(E × B)

(6.48)

2 Poynting’s vector is also written in many experimental physics texts as

S = E × H

where H = ǫ0c
2B but we cannot go into the reason for that here.
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Example The expressions u and S for a simple wave

We shall calculate here the quantities u and S for a simple wave. Let E and B be constants
and k and ω have their usual meaning. Then consider the electromagnetic wave

E = E cos(kx − ωt) j

B = B cos(kx − ωt)k
(6.49)

then for u and S we find the expressions

u =
ǫ0
2

(
E2 + c2B2

)
cos2(kx − ωt)

S = ǫ0c
2EB cos2(kx − ωt) i

(6.50)

As an exercise the reader should use Maxwell’s equations to show that the constants E
and B are related and that in fact

B =
E

c
(6.51)

thus one of E or B can be eliminated in the expressions above for u and S.

Example The average energy per cycle

Since a wave, in general, repeats itself every cycle, i.e. every 1/ν seconds, it is more useful
when quoting S · n to give its average over one compete cycle. Let us calculate this average
for the wave of the previous example.

First we denote the average of S · n over one cycle by < S · n > where < S · n > is
defined by

< S · n >=

∫ T

0
S · n dt

T
, where T =

1

ν
=

2π

ω
, since ω = 2πν (6.52)

Now let us choose, for simplicity, n = i so that the expressions from the previous ex-
ample give us

S · i = ǫ0c
2EB cos2(kx − ωt)

⇒< S · i > = ǫ0c
2EB

1

T

∫ T

0

cos2(kx − ωt) dt, T =
2π

ω

(6.53)

To evaluate the integral 3 note that T is just a complete period and so

1

T

∫ T

0

cos2(kx − ωt) dt =
1

2π

∫
2π

0

cos2(θ) dθ

=
1

2

(6.56)

3 If the reader wants the details spelled out we give them in this footnote; however we do not require
them for this course. Setting θ = kx − ωt we find that

1

T

∫
T

0

cos2(kx − ωt) dt = −
1

ωT

∫ (kx−ωT )

kx

cos2(θ) dθ



46 Electricity and magnetism: an introduction to Maxwell’s equations

Now we can substitute for the integral in the expression for < S · i > and obtain the
final result which is

< S · i > =
ǫ0c

2EB

2

=
1

2
ǫ0cE

2, if we use the result B =
E

c

(6.57)

Example Poynting’s vector S in practice: power dissipation in a wire

Let us take a conducting wire of resistance R and apply a potential difference V to it
producing a current I. Then we immediately have an electric field E inside the wire related
to V by

V = |E|L (6.58)

and a magnetic field B which at a distance r from the wire we know is given by the expression

B =
µ0I

2πr
e

=
I

2πǫ0c2r
e, using µ0 =

1

ǫ0c2

(6.59)

where e is a unit tangent vector to the line of force of radius r. Now take a cylinder of
length L and radius r that encloses the wire. Since S = ǫ0c

2E × B is radial then the energy
escaping per unit time from the wire is expressible as an integral over the curved surface S
of this cylinder. If we denote this quantity by P , since it is actually the power dissipated
by the wire, then we have

P =

∫

S

S · r̂ = ǫ0c
2|E × B|2πrL, since E × B is constant on S (6.60)

But, if n denotes a unit vector along the wire, then

E = |E|n (6.61)

But is easy to verify that

∫
cos2(θ) dθ = {sin(θ) cos(θ) + θ}

⇒ −
1

ωT

∫ (kx−ωT )

kx

cos2(θ) dθ = −
1

2ωT
[sin(θ) cos(θ) + θ]

(kx−ωT )
kx

(6.54)

and when we compute the RHS of 6.54 we obtain

−
1

2ωT
{sin(kx − ωT ) cos(kx − ωT ) − sin(kx) cos(kx) − ωT} =

1

2
(6.55)

where the cos and sin terms completely cancel with one another because ωT = 2πνν−1 = 2π and both are

periodic with period 2π.
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so that, if we use the expressions for E and B and the fact that E is perpendicular to B

then we can compute that

P = ǫ0c
2|E|

I

2πǫ0c2r
2πrL

= |E|IL

(6.62)

But V = |E|L so we obtain the result

P = V I = I2R, using V = RI (6.63)

Thus we see that the Poynting vector has recovered for us the expression we already calcu-
lated by a more pedestrian method, cf. 3.32.
Example The energy density u in practice: energy storage by a capacitor

First a couple of facts about about capacitors—objects which were not dealt with earlier
in these lectures.

A capacitor is a device for storing charge and it usually consists of two plates separated
by an insulator. When a voltage difference V is applied across the plates a charge Q
accumulates and the energy U required to do this is then stored in the capacitor. The
fundamental relations between V , Q and U are
(i)

Q = CV (6.64)

where C is a constant called the capacitance of the capacitor and
(ii)

U =
1

2
CV 2 (6.65)

Now we shall use the energy density

u =
ǫ0
2

(
E2 + c2B2

)
(6.66)

to calculate the energy stored in a standard parallel plate capacitor—cf. Figure 9—whose
plates have area A and are separated by a distance d

Area A

Area A

width d

insulator between plates
V

+

+Q

−Q

Fig. 9: A parallel plate capacitor with a voltage V applied
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First of all there is no magnetic field inside the capacitor so we have

u =
ǫ0
2

E2 (6.67)

The energy U stored inside is got by integrating u over the internal volume of the capacitor;
thus

U =

∫

V

u dV =
ǫ0
2

E2Ad, since |E| is constant (6.68)

Let us now accept that the voltage V across the capacitor is related to E by the equation

|E| =
V

d
(6.69)

Hence

U =
ǫ0
2

V 2

d2
Ad =

1

2

ǫ0A

d
V 2 (6.70)

But for a parallel plate capacitor it is known that (again, we just accept this fact here)

C =
Aǫ0
d

(6.71)

so we immediately have the result that

U =
1

2
CV 2 (6.72)

and we are in agreement with our previous result, cf. 6.65.
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