(2) * Two systems of units in USE! (at least) Example using Coulomb law:
\# SI/MKSI

$$
\vec{F}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{\left|\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right|^{2}}\left(\overrightarrow{r_{1}-\vec{r}_{2}}\right)=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \hat{r}
$$

* CGF/Ganision

$$
\vec{F}=\frac{q_{1} q_{2}}{\left|\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right|^{2}}\left(\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right)=\frac{q_{1} q_{2}}{r^{2}} \hat{r}
$$

This module".
use SI units, but look up or learn the CGS form for inpertant equations

* Aim of this class: MAxwell's EqUATIONS
$\rightarrow$ unify electricity magnetism, priddet electromagnetic waves (light, $x$-rays, $\gamma$-rays,) radio-vaves, microwaves).

$$
\vec{\nabla} \cdot \vec{E}=\frac{1}{\epsilon_{0}} \rho \quad(\text { Coulomb's law /Gonds's law) }
$$

$\vec{\nabla} \cdot \vec{B}=0$ (absence of magnetic mono poles)
$\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \quad$ (eledromagnetic induction/)

$$
\vec{\nabla} \times \vec{B}=\frac{1}{\epsilon_{0} c^{2}} \vec{J}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}
$$ faraday's law

Coulomb's law

felt by charge q,

$$
\vec{F}=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{\left[\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right]^{2}}\left(\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right)
$$

* A indicates unit vector in director of
* $\epsilon_{0}=$ permittivity of free space

$$
=8.85 \times 10^{-12} \text { Coulomb }^{2} / \text { Noutan-m }^{2}
$$

* Question : does the origin of the coordinate system matter?
* $q_{1}(\vec{r})$
$\because \quad q_{2}\left(\vec{r}_{2}\right)$
- $Q(\vec{r})$

$$
\begin{aligned}
\vec{F} & =\overrightarrow{F_{1}}+\overrightarrow{F_{2}}+\ldots \\
& =\frac{1}{4 \pi \epsilon_{0}}\left[\frac{q_{1} Q}{\left|\vec{r}-\vec{r}_{1}\right|^{2}}\left(\vec{r}-\vec{r}_{1}\right)+\frac{q_{2} Q}{\left|\vec{r}-\vec{r}_{2}\right|^{2}}\left(\overrightarrow{r_{n}}-\overrightarrow{r_{2}}\right)+\cdots\right. \\
& =Q \vec{E} 2
\end{aligned}
$$

Force on charge? at position $\vec{r}$ due

$$
{ }^{r} q_{3}\left(\overrightarrow{r_{3}}\right) \cdots
$$ charges $q_{1}, q_{1}, q_{3} \ldots$ at $\vec{r}_{1}, \vec{r}_{2}, \ldots$.

(4.)

Electric Field
Def $\vec{E}$ at point $\vec{r}$ is the force $\wedge$ experience a init charge at that point.

* Due to single charge $q_{1}$ at $\overrightarrow{r_{1}}$ :

$$
\vec{E}(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} \cdot 1}{\left|\vec{r}-\overrightarrow{r_{1}}\right|^{2}}\left(\widehat{\vec{r}}-\overrightarrow{r_{1}}\right)
$$

Due to collection of charges, $q_{1}, q_{2}, \ldots$ at

$$
\begin{aligned}
\vec{E}(\vec{r}) & =\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q_{1}}{\left|\vec{r}-\vec{r}_{1}\right|^{2}}\left(\overrightarrow{\vec{r}}-\vec{r}_{1}\right)+\frac{q_{2}}{\left|\vec{r}-\vec{r}_{2}\right|^{2}}\left(\vec{r}-\overrightarrow{r_{2}}\right)\right) \\
& =\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{\left|\vec{r}-\vec{r}_{i}\right|^{2}}\left(\widehat{r}-\vec{r}_{i}\right) \\
& =\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{\eta^{2}} \hat{q} \quad \text { (Griffiths'retation) }
\end{aligned}
$$

* "Principle of superposition" $\rightarrow$
$\vec{E}$-field due to collection of charges is The sum of $\vec{E}$-fields due to each individual charge.


## Electric dipole



Vector with magnitude $p=q d$
and direction from negative to positive charge

Ideally: each is a point charge, and d is very small. In practice, charges could be extended.

Then you would calculate the direction vector from one center of charge to another.

## Electric field due to collection of charges



Electric field at point M ?
Electric field at point N ?.

Electric field at point M? Calculate Field due to EACH charge at M. Lucky they all have only x-components. Use vector addition.

Electric field at point N? Calculate field due to EACH charge at N. Not so lucky now. Use vector addition.
(6) Lecture 2

Electric Potential With oujvelectric a sect is assocind d

$$
\vec{E}(\vec{r})=-\vec{\nabla} V(\vec{r})=-\left(\frac{\partial V}{\partial x} \hat{i}+\frac{\partial V}{\partial y} \hat{j}+\frac{\partial V}{\partial z} \hat{k}\right)
$$

* Will sometimes use $\hat{x}, \hat{y}, \hat{z}$ binttrad of $\hat{i}, \hat{j}, \hat{k}$ \# Remarkable a scalar field (one muser per position) gives all the information of a rector field ( $\$$ numbers per position).
* 

$$
\begin{aligned}
& d V(\vec{r})=-\vec{E} \cdot d \vec{r} \\
& V(\vec{r})=V\left(\overrightarrow{r_{0}}\right)-\int_{\overrightarrow{r_{0}}}^{\vec{E}} \cdot d \vec{r}
\end{aligned}
$$

Work deme to bring a mit charge from $\overrightarrow{r_{0}}$ to
"Differentiation is apposite of ingratim- 39 version"
$v\left(r_{0}\right)$ is comilat of integration

* Noe that a reference point $\left(\vec{r}_{0}\right)$ has to be specified. The path between $\vec{r}_{0}$ and $\vec{r}$ in the integral dresnot matter.
\# Usually $\vec{r}_{\delta}$ taken to be at infinity, far from charges, so $V\left(\vec{r}_{0}\right)=0$
* Potential due $T_{B}$ single charge ( $q_{1}$ at $\vec{r}_{1}$ )

$$
V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{|\vec{r}-\vec{r}|} \text { \# no unit vector? }
$$



- Principle of superporitim $q_{1}$ at $\vec{r}_{1}, q_{2}$ at $\vec{r}_{2}, \ldots .$.

$$
\left.V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{q_{1}}{\left|\vec{r}-\overrightarrow{r_{1}}\right|}+\frac{q_{2}}{\left|\vec{r}-\overrightarrow{r_{2}}\right|}+\cdots\right)\right)_{\operatorname{scr}}^{\sin }
$$

$\longrightarrow D_{0} W_{r e}$ of charge $\left.\quad .7 a-7 b\right)$ first

* Potential difference between tar points


A

$$
V\left(\vec{r}_{B}\right)-V\left(\overrightarrow{r_{A}}\right)=-\int_{\overrightarrow{r_{A}}}^{\overrightarrow{r_{B}}} \vec{E} d \vec{r}
$$

$=$ the work done in carrying a unit charge from $A$ to $B$.
Work done in carrying charge $q$, is $W=q \Delta V$

* Relation betareen el. potentirl and $\vec{E}$-field is similar to pelation between potential 4 force.
* Difference of electric potentials $\theta$ = voltage difference between Two points
* Unit of potential: Joule/Conlomb = Volt

Unit of $\vec{E}$-field is NfCoulonbs $=$ Vott/om
(7)

* Example


$$
\vec{E}=5 E_{0} \hat{i} \quad \begin{gathered}
\text { EASY CASE: CONSTANT } \\
E-F I E L D \\
\hline
\end{gathered}
$$

$$
\begin{aligned}
V_{Q P} & =V_{Q}-V_{p}=-\int_{\overrightarrow{r_{p}}}^{\vec{r}_{0}} \overrightarrow{\vec{E}_{p}} d \vec{r} \\
& =-\int_{x=0}^{x=h}\left(5 E_{0} \hat{i}\right) d x \hat{i}=5 E_{0} \int_{0}^{l} d x=5 E_{0} l
\end{aligned}
$$

Voltage difference in direction of field

$$
=\text { field } x \text { distance }
$$

Exercise.
(1) Show $V_{P R} \equiv 0$

Voltage difference 1 to field $=0$
(2) Calculate $V_{R Q}=V_{Q}-V_{R}$


Cam choose arr path: should get same result.

* Example:: line of charge:

Linear change density $\lambda$


Total charge on line/rod:

$$
Q=\lambda L
$$

Eledic Potential at pions $P(l, 0)$ ?


Take element of length du
Cold be $(x, x+d x)$ or $\left(x-\frac{d u}{2}, x+\frac{d x}{2}\right)$,
doesn't matter.
Can think of element as pint charge $\lambda d u$ Potential at $P$ due to this element:

$$
d V=\frac{1}{4 \pi \epsilon_{0}} \frac{\lambda d u}{1-u}
$$

Total potential?

$$
V=\int d v=\frac{\lambda}{4 \pi \sigma_{0}} \int_{0}^{L} \frac{d u}{l-u} \quad \begin{aligned}
& \text { Integrate } \\
& \text { prater tertial? } \\
& \text { to } k=L
\end{aligned}
$$

"Adding" Mall infinitesimal elements
(tb)

$$
\begin{aligned}
V(l, \theta) & =\frac{\lambda}{4 \pi \epsilon_{0}}[-\ln (l-L)]^{*=0} \\
& =\frac{x}{4 \pi \epsilon_{0}}[-\ln (l-L)+\ln (l)] \\
& =\frac{\lambda}{4 \pi \epsilon_{0}}\left[-\ln \left(1-\frac{L}{l}\right)\right]=\frac{\lambda}{4 \pi \epsilon_{0}} \ln \left(\frac{l}{l-L}\right)
\end{aligned}
$$

* Exercise: What if $\ell \gg L$ ?

$$
V(x, 0)=\frac{-\lambda}{4 \pi \epsilon_{\delta}} \ln \left(1-\frac{L}{x}\right) \approx \frac{Q}{4 \pi \epsilon_{0} x}
$$

* Electric field at $P(\ell, 0)$ ? $\quad E_{y}=E_{z}=0$

Que to the element: $d E_{x}=\frac{1}{4 \pi \epsilon_{0}} \frac{\lambda d x u}{(l-\mu)^{2}}$

$$
\begin{gathered}
E_{x}=\frac{\lambda}{4 \pi \epsilon_{0}} \int_{0}^{L} \frac{d x}{(l-x)^{2}}=\frac{\lambda}{4 \pi \epsilon_{0}}\left[\frac{H 1}{(l-u)}\right]_{0}^{L} \\
=\frac{\lambda}{4 \pi \epsilon_{0}}\left(\frac{1}{l-L}-\frac{1}{l}\right)
\end{gathered}
$$

