MP352
 Special Relativity

Time allowed: 2 hours
Answer ALL questions

This is a SAMPLE exam, roughly reflecting the general structure of the finals for 2017-2018.

1. Consider the set of 4×4 matrices Λ with real elements which satisfy the relation

$$
\Lambda^{T} g \Lambda=g, \quad \text { where } \quad g=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

is the metric tensor. These matrices represent Lorentz transformations of spacetime points $(c t, x, y, z)$.
(a) Under what conditions is a matrix of this set proper?

Explain what a non-proper matrix represents physically.

[6 marks]

(b) If a matrix satisfies condition (1), show that its inverse satisfies the condition as well.

[8 marks]

(c) Ignoring the y and z directions, write down a two-dimensional version of condition (1). Use this condition to determine the form of an infinitesimal boost in the x-direction.
In other words, find the generator of the group $O(1,1)$ or $S O(1,1)$.
2. Let Σ and Σ^{\prime} be inertial frames. Frame Σ^{\prime} moves at velocity v with respect to Σ, in the common (positive) x direction. Measurements of an event in the two frames, $(c t, x, y, z)$ and $\left(c t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$, are related by the Lorentz transformation

$$
c t^{\prime}=\gamma_{v}(c t-v x / c) ; \quad x^{\prime}=\gamma_{v}(x-v t) ; \quad y^{\prime}=y ; \quad z^{\prime}=z
$$

where $\gamma_{v}=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$.
(a) A photon leaves the origin of Σ at the time $t=0$ in a direction which forms an angle of 45° with the x-axis. What is the angle with the x^{\prime}-axis, as observed in Σ^{\prime} ?
[18 marks]
(b) The rank-2 tensor has components $N^{\alpha \beta}$ in Σ and components $\left(N^{\prime}\right)^{\alpha \beta}$ in the Σ^{\prime}.
Find $\left(N^{\prime}\right)^{00}$ and $\left(N^{\prime}\right)^{01}$ in terms of the components $N^{\alpha \beta}$.
Hint: the y and z directions (2 and 3 components) play no role.
[12 marks]
(c) Write down the Galilean tranformation relating (ct, $x, y, z)$ and ($\left(t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$.

Under which limit does the Lorentz transformation reduce to the Galilean transformation?
3. (a) A Poincaré transformation (Λ, a) involves a Lorentz transformation Λ and a shift by the four-vector a. (A spacetime event x is transformed to $x^{\prime}=\Lambda x+a$.
Find out the result of two successive Poincaré transformations, $\left(\Lambda_{1}, a_{1}\right)$ and $\left(\Lambda_{2}, a_{2}\right)$.
Are Poincaré transformations commutative?
[10 marks]
(b) Explain using equations or inequalities what it means for a four-vector to be time-like, space-like, and light-like.
Find the four-momentum of a particle with nonzero mass m and velocity $\vec{u}=(c / 2, c / 2,0)$. Find out whether this four-vector is timelike, space-like, or light-like.
[13 marks]
(c) In the lab frame, two identical balls, each having mass M, collide with equal but opposite velocities of magnitude v. Their collision is perfectly inelastic, so they stick together and form a single body.
Find the mass of the final body in terms of M and v.
Inertial frame Σ moves with one of the balls before the collision. Draw the worldlines of all particles as seen from this frame. Indicate the velocities (inverse slopes) of each straight segment.

