# MP352 <br> Special Relativity 

Time allowed: 2 hours
Answer ALL questions

This is a SAMPLE exam, roughly reflecting the general structure of the finals for 2017-2018.

1. Consider the set of $4 \times 4$ matrices $\Lambda$ with real elements which satisfy the relation

$$
\Lambda^{T} g \Lambda=g, \quad \text { where } \quad g=\left(\begin{array}{cccc}
1 & 0 & 0 & 0  \tag{1}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

is the metric tensor. These matrices represent Lorentz transformations of spacetime points ( $c t, x, y, z$ ).
(a) Under what conditions is a matrix of this set orthochronous?

Explain what a non-orthochronous matrix represents physically.
[6 marks]
(b) Show that, if a transformation of spacetime coordinates $(c t, x, y, z)$ preserves the Minkowski norm, then it must satisfiy condition (1).
[13 marks]
(c) Explain whether the group of matrices satisfying condition (1) (the Lorentz group) is abelian or not. If it is non-abelian, give two example elements of the group which do not commute.
2. Let $\Sigma$ and $\Sigma^{\prime}$ be inertial frames. Frame $\Sigma^{\prime}$ moves at velocity $v$ with respect to $\Sigma$, in the common (positive) $x$ direction. Measurements of an event in the two frames, $(c t, x, y, z)$ and $\left(c t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$, are related by the Lorentz transformation

$$
c t^{\prime}=\gamma_{v}(c t-v x / c) ; \quad x^{\prime}=\gamma_{v}(x-v t) ; \quad y^{\prime}=y ; \quad z^{\prime}=z
$$

where $\gamma_{v}=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$.
(a) A photon has velocity $\vec{u}^{\prime}=\left(\frac{2}{3} c, \frac{2}{3} c, \frac{1}{3} c\right)$ relative to $\Sigma^{\prime}$.

Find the velocity of the photon relative to $\Sigma$.
Explain how your result is consistent with the invariance of the speed of light.
[19 marks]
(b) A body of mass $m$ is at rest in the frame $\Sigma$.

Write down its four-velocity in the frame $\Sigma^{\prime}$.
Write down its four-velocity in the frame $\Sigma$.
Show that the norm of the four-velocity is the same in the two frames.
3. (a) Lorentz boosts in the $x$ direction can be represented by a transformation matrix of the form

$$
\left(\begin{array}{cc}
\cosh \phi & -\sinh \phi \\
-\sinh \phi & \cosh \phi
\end{array}\right)
$$

where the $y$ and $z$ coordinates have been ignored.
Show that the set of all boosts in the $x$ direction form a group.
Will the set of all boosts in ALL directions also form a group? Explain why, or why not.
[18 marks]
(b) A photon with energy $E$ collides with a stationary mass $m$. They combine to form one particle. What is the mass of this particle? What is its speed?
[10 marks]
(c) Darragh (D) remains on earth while his twin sister Ciaomhe (C) travels to a distant planet at speed $v$ and then immediately returns, traveling at speed $2 v$.
Draw the worldlines of both D and C, as seen from D's frame (earth frame).
Draw the worldlines of both D and C , as seen from the inertial frame that is coincident with Ciaomhe's vehicle during her outward journey. Indicate the speeds (or inverse slopes) of each straight line in your diagram.
[12 marks]

