

Maynooth University

National University of Ireland Maynooth

MATHEMATICAL PHYSICS

SEMESTER 2

2017-2018

MP352
 Special Relativity

Dr. M. Haque, Prof. D. A. Johnston and Dr. J.-I. Skullerud

Time allowed: 2 hours
Answer ALL questions

1. Consider intertial frames Σ and Σ^{\prime}. Frame Σ^{\prime} moves at velocity v with respect to Σ, in the common (positive) x direction. Measurements of an event in the two frames, $(c t, x, y, z)$ and $\left(c t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$, are related by the Lorentz transformation

$$
c t^{\prime}=\gamma_{v}(c t-v x / c) ; \quad x^{\prime}=\gamma_{v}(x-v t) ; \quad y^{\prime}=y ; \quad z^{\prime}=z
$$

where $\gamma_{v}=\left(1-v^{2} / c^{2}\right)^{-1 / 2}$.
(a) A particle moves with velocity $(-w, 0,0)$ relative to Σ. Here w is a positive constant.
Write down the four-velocity of the particle as observed from the Σ frame and as observed from the Σ^{\prime} frame.
(b) A photon has velocity $\vec{u}=\left(\frac{3}{5} c, 0, \frac{4}{5} c\right)$ relative to Σ.

Find the velocity $\overrightarrow{u^{\prime}}$ of the photon relative to Σ^{\prime}.
Explain how your result is consistent with the constancy of the speed of light.
[18 marks]
(c) A stick is at rest in frame Σ. It lies in the $x y$ plane and makes an angle $\pi / 4\left(=45^{\circ}\right)$ with the x-axis. Using the length contraction formula, find the angle that the stick makes with the x^{\prime} axis, as observed from the Σ^{\prime} frame.
2. Consider the set of 4×4 matrices Λ with real elements which satisfy the relation

$$
\Lambda^{T} g \Lambda=g, \quad \text { where } \quad g=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

is the metric tensor. These matrices represent Lorentz transformations of spacetime points (ct, x, y, z).
(a) Under what conditions is a matrix of this set orthochronous?

Explain what a non-orthochronous matrix represents physically.
[6 marks]
(b) Show that, if a transformation of spacetime coordinates ($c t, x, y, z$) preserves the Minkowski norm, then it must satisfiy condition (1).
[13 marks]
(c) The group of matrices satisfying condition (1) is known as $O(1,3)$. What additional conditions are required to obtain the group of physical Lorentz transformations, $S O^{\uparrow}(1,3)$?
[4 marks]
(d) The group $S O^{\uparrow}(1,3)$ is not abelian. Give two example elements of the group which do not commute, and explain what transformations your examples represent.
Which types of pure boosts commute with each other?
3. (a) Measured in one intertial frame, events A and B have spatial coordinates

$$
\left(x_{A}, y_{A}, z_{A}\right)=(4 L,-6 L, 0), \quad\left(x_{B}, y_{B}, z_{B}\right)=(7 L,-2 L, 0)
$$

and temporal coordinates

$$
t_{A}=2 L / c, \quad t_{B}=12 L / c
$$

where L is a positive constant.
Calculate the invariant interval (Minkowski interval) between the events. Is this interval timelike, spacelike, or null?
Explain whether there exists a different inertial frame in which the two events occur simultaneously.
(b) A photon of wavelength λ collides with a stationary electron. After the collision, the photon scatters at an angle θ with respect to the incident direction, and has wavelength λ^{\prime}. The electron moves with momentum p_{e} after the collision, in a direction making angle ϕ with the incident direction of the photon.
Write down equations for energy and momentum conservation.
Show that

$$
\lambda^{\prime}=\lambda+\frac{h}{m c}(1-\cos \theta) .
$$

[17 marks]
(c) On a spacetime diagram (ct versus x diagram), draw the worldline of a photon starting at the origin, and the worldline of an object with velocity c/2 starting at the origin three seconds later.
Sketch the worldline of a particle subject to a constant force in the positive x direction. The particle starts from rest at the origin at time $t=0$. State in words the initial and asymptotic (late-time) speeds of the particle. Both should be clear from your sketch.

