

Maynooth University

National University of Ireland Maynooth

MATHEMATICAL PHYSICS

SEMESTER 2, REPEAT
 2018-2019

MP352
 Special Relativity

Dr. M. Haque, Prof. D. A. Johnston and Dr. J.-I. Skullerud

Time allowed: 2 hours
Answer ALL questions

1. Let Σ and Σ^{\prime} be inertial frames. Frame Σ^{\prime} moves at speed v with respect to Σ, in the common (positive) x direction. Measurements of an event in the two frames, $(c t, x, y, z)$ and $\left(c t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$, are related by the Lorentz transformation

$$
\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma_{v} & -\gamma_{v} \frac{v}{c} & 0 & 0 \\
-\gamma_{v} \frac{v}{c} & \gamma_{v} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right) \quad \text { where } \gamma_{v}=\left(1-v^{2} / c^{2}\right)^{-1 / 2}
$$

(a) The rapidity ϕ is defined such that $\tanh \phi=v / c$. Express the Lorentz boost transformation above in terms of the rapidity. The speed v, or the quantity γ_{v}, should not appear in your expression.
(Useful identities: $\tanh \phi=\frac{\sinh \phi}{\cosh \phi} ; \quad \cosh ^{2} \phi-\sinh ^{2} \phi=1$.)
(b) A photon has velocity $\overrightarrow{u^{\prime}}=(0, c, 0)$ relative to Σ^{\prime}.

Find the velocity of the photon relative to Σ.
Calculate the speed of the photon relative to Σ. Explain whether and why your result was expected.
[12 marks]
(c) Represent the $(c t, x)$ axes and the $\left(c t^{\prime}, x^{\prime}\right)$ axes on a single spacetime diagram, such that the ct and x axes are perpendicular to each other. Show two events on this joint diagram which are simultaneous when measured from Σ^{\prime}. Show which of these events happens earlier according to Σ.
Use the Lorentz transformations to find out how x^{\prime} units are related to x units on this diagram. (Hint: You could consider the event $\left(c t^{\prime}, x^{\prime}\right)=(0,1)$, find its coordinates in the Σ frame, and hence obtain the distance of this point from the origin in x units.)
[13 marks]
2. Consider the set of 4×4 matrices Λ with real elements which satisfy the relation

$$
\Lambda^{T} g \Lambda=g, \quad \text { where } \quad g=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

is the metric tensor. These matrices represent Lorentz transformations of spacetime points $(c t, x, y, z)$.
(a) Find the possible values of the determinant of a matrix belonging to this set.

[5 marks]

(b) What additional property must such a matrix satisfy, in order to represent a proper Lorentz tranformation?
What does a non-proper Lorentz transformation mean physically?
(c) If a matrix satisfies condition (1), show that its inverse satisfies the condition as well.
(d) Ignoring the y and z directions, write down a two-dimensional version of condition (1). Use this condition to determine the form of an infinitesimal boost in the x-direction.
3. (a) The current density 4 -vector J^{μ} is defined as $(c \rho, \vec{J})$, where ρ is the charge density and \vec{J} is the usual current density or 3 -current density. Show that the tensor equation $\partial_{\mu} J^{\mu}=0$ is equivalent to the continuity equation of electromagnetism.

[10 marks]

(b) Explain using equations or inequalities what it means for a four-vector to be time-like, space-like, and light-like.
Find the four-velocity of a particle with nonzero mass m and velocity $\vec{u}=(c / 3, c / 3, c / 3)$. Find out whether this four-vector is time-like, space-like, or light-like.
[14 marks]
(c) In the lab frame, two identical balls, each having mass m_{0}, collide with equal but opposite velocities of magnitude v. Their collision is perfectly inelastic, so they stick together and form a single body.
Find the mass of the final body in terms of m_{0} and v.
Inertial frame Σ moves with one of the balls before the collision. Find the energy of the final body relative to Σ.
[11 marks]

