Maynooth University
National University of Ireland Maynooth

MATHEMATICAL PHYSICS

SEMESTER 2, REPEAT EXAM

2019-2020

MP352

Special Relativity

Prof. P. Coles, Dr. M. Haque, and Prof. D. A. Johnston

Time allowed: 2 hours

Answer ALL questions

1. Consider inertial frames Σ and Σ^{\prime}. Frame Σ^{\prime} moves at speed v with respect to Σ, in the common (positive) x direction. Measurements of an event in the two frames, $(c t, x, y, z)$ and $\left(c t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)$, are related by the Lorentz transformation

$$
\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\gamma \frac{v}{c} & 0 & 0 \\
-\gamma \frac{v}{c} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right) \quad \begin{aligned}
& \text { where } \\
&
\end{aligned}
$$

(a) A particle moves with velocity $(w, 0,0)$ relative to Σ. Here w is a positive constant, and $w>v$.
Write down the four-velocity of the particle as observed from the Σ frame and as observed from the Σ^{\prime} frame.
(b) A photon has velocity $\vec{u}=\left(\frac{3}{5} c, 0, \frac{4}{5} c\right)$ relative to Σ.

Find the velocity $\overrightarrow{u^{\prime}}$ of the photon relative to Σ^{\prime}.
Explain how your result is consistent with the constancy of the speed of light.
[18 marks]
(c) The rank-2 contravariant tensor $T^{\mu \nu}$ is antisymmetric.

Find the 01 component of this tensor in the Σ^{\prime} frame (i.e., find $\left.\left(T^{\prime}\right)^{01}\right)$ in terms of the components in the Σ frame.
Show that $\left(T^{\prime}\right)^{01}$ can be expressed in terms of T^{01} alone.
2. (a) Measured in one inertial frame, events A and B have spatial coordinates

$$
\left(x_{A}, y_{A}, z_{A}\right)=(4 L,-3 L, 0), \quad\left(x_{B}, y_{B}, z_{B}\right)=(7 L, 0,2 L)
$$

and temporal coordinates

$$
t_{A}=5 L / c, \quad t_{B}=14 L / c
$$

where L is a positive constant.
Calculate the invariant interval (Minkowski interval) between the events. Is this interval timelike, spacelike, or null?
Explain whether there exists a different inertial frame in which the two events occur simultaneously.
(b) Particle A, while at rest in the lab, decays into particle B and a photon. The rest masses of A and B are m_{A} and m_{B} respectively.
Show that, after the decay, the particle B and the photon each have momentum of magnitude

$$
\frac{m_{A}^{2}-m_{B}^{2}}{2 m_{A}} c
$$

as measured in the lab frame.
[12 marks]
(c) On a spacetime diagram (ct versus x diagram), draw the worldline of a photon starting at the origin, and the worldline of an object with velocity c/2 starting at the origin five seconds later.
Sketch the worldline of a particle subject to a constant force in the positive x direction. The particle starts from rest at the origin at time $t=0$. State in words the initial and asymptotic (late-time) speeds of the particle. Both should be clear from your sketch.
3. Consider the set of 4×4 matrices Λ with real elements which satisfy the relation

$$
\Lambda^{T} g \Lambda=g, \quad \text { where } \quad g=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{1}\\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

is the metric tensor. These matrices represent Lorentz transformations of spacetime points $(c t, x, y, z)$.
(a) Under what conditions is a matrix of this set orthochronous?

Explain what a non-orthochronous matrix represents physically.
[6 marks]
(b) Show that, if a transformation of spacetime coordinates $(c t, x, y, z)$ preserves the Minkowski norm, then it must satisfiy condition (1).
[13 marks]
(c) The group of matrices satisfying condition (1) is known as $O(1,3)$. What additional conditions are required to obtain the group of physical Lorentz transformations, $S O^{\uparrow}(1,3)$?
[4 marks]
(d) The group $S O^{\uparrow}(1,3)$ is not abelian. Give two example elements of the group which do not commute, and explain what transformations your examples represent.
Which types of pure boosts commute with each other?

