Due on Monday, February 8th, via Moodle
Problems marked [SELF] are for self-study and additional exercise; will not be marked.

The relativistic factor

$$
\gamma(v)=\frac{1}{\sqrt{1-(v / c)^{2}}}
$$

is central in special relativity. It is a function of the speed (magnitude of velocity) v. It's vital to know the properties of $\gamma(v)$ in some detail.
If tired of carrying along factors of c, you could use the common notation $\beta=\frac{v}{c}$. If there are multiple speeds involved, such as u and v, you could use $\beta_{u}=\frac{{ }^{c}}{c}$ and $\beta_{v}=\frac{v}{c}$. But please express final results in terms of u, v and c again.

1. (a) [2 pts.] Show that

$$
\frac{1}{\gamma^{2}}+\frac{v^{2}}{c^{2}}=1 \quad\left\{\begin{array}{l}
\text { Here } \gamma \text { is used as } \\
\text { shorthand for } \gamma(v)
\end{array}\right.
$$

(b) [2 pts.] Show that

$$
\gamma(v) \times(c+v)=c \sqrt{\frac{c+v}{c-v}}
$$

(c) $[\mathbf{6}$ pts.] Show that

$$
\frac{d \gamma}{d t}=\frac{1}{c^{2}} \gamma^{3} v \dot{v} \quad \text { and } \quad \frac{d \gamma}{d t}=\frac{1}{c^{2}} \gamma^{3} \vec{v} \cdot \vec{a}
$$

where we use the shorthands $\gamma=\gamma(v)$ and $\dot{v}=\frac{d v}{d t}$. Note that \dot{v} is the derivative of the speed, not the derivative of the 3 -vector \vec{v}, i.e., \dot{v} is not the acceleration vector $\vec{a}=\frac{d \vec{v}}{d t}$.
(d) [5 pts.] If $w=(u+v) /\left(1+u v / c^{2}\right)$, derive a relation of the form

$$
\gamma(w)=\gamma(u) \gamma(v) \times \text { something }
$$

and state explicitly what this something is.
2. [3 pts.] Present a neat hand-drawn plot of $\gamma(v)$ as a function of v or v / c. (As usual, you can use a computer plotting programme to figure out what this looks like, but please submit a hand-drawn plot.)
Looking at your curve, I should be able to immediately see the value of $\gamma(v)$ at zero speed, the slope at zero speed, and at which speed, if any, $\gamma(v)$ diverges.
3. The binomial series

$$
(1+x)^{\epsilon}=1+\epsilon x+\frac{1}{2!} \epsilon(\epsilon-1) x^{2}+\frac{1}{3!} \epsilon(\epsilon-1)(\epsilon-2) x^{3}+\ldots \ldots
$$

holds for all $|x|<1$. Please find a way to remember this, so that you can use it without having to look it up. (Look up 'binomial series' online.)
(a) [$\mathbf{3} \mathbf{p t s}$.$] Derive the binomial expansion using the Taylor expansion.$ State clearly which function you are expanding and around what point.
(b) [2 pts.] Expand $(P+Q)^{\epsilon}$, finst assuming $|Q|<|P|$, and then for the case $|P|<|Q|$.
(c) [3 pts.] Use the binomial expansion to find good approximations for $(1001)^{1 / 3}$ and $(15)^{1 / 4}$, without using a calculator.
(d) [SELF] For which values of ϵ does the series terminate after a finite number of terms?
(e) [4 pts.] Expand $\gamma(v)$ in powers of v / c, including at least up to order $(v / c)^{6}$. This expansion is useful for small v, when γ is close to 1 .
(f) [3 pts.] If you truncate the series, you get an approximant for $\gamma(v)$. Plot $\gamma(v)$ as a function of v / c, together with the approximants obtained by keeping the first one, two, three or four terms of the series. This should show how successive approximants do a better and better job of approximating our $\gamma(v)$ function.
Please submit only a neat hand-drawn plot, no computer printouts.
(g) [4 pts.] Express v as a function of $1 / \gamma$. Expand using the binomial expansion, at least up to order $1 / \gamma^{6}$. For which values of v is this expansion useful?
4. [3 pts.] A low-flying earth satellite travels at about $8000 \mathrm{~m} / \mathrm{s}$. What is the factor γ for this speed?
5. We will be dealing a lot with hyperbolic functions.
(a) [3 pts.] Look up (or recall) and report the definitions of the hyperbolic functions $\cosh (x), \sinh (x)$ and $\tanh (x)$, in terms of the exponential functions e^{x} and e^{-x}.
(b) [3 pts.] Provide neat hand-drawn plots of the three hyperbolic functions.
(You can use a computer program if you need to, but you really should be able to figure out how these functions look like, from the definitions in terms of e^{x} and e^{-x}. I suggest trying first without a computer program or textbook.)
(c) [4 pts.] Express the corresponding three trigonometric functions in terms of $e^{i x}$ and $e^{-i x}$. Are the relations

$$
\sinh (x)=c_{1} \sin (i x) \quad \text { and } \quad \sinh (i x)=c_{2} \sin (x)
$$

correct for some value of c_{1} and c_{2} ? Which values?

