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Due on Monday, February 22nd.

Some amount of research (looking up and reading up, wikipedia or
textbooks) might be necessary for this problem set.

−−−−−−−−−−−−− ?−−−−−−−−−−−−

1. 2D rotations.

In the previous problem set we found that rotations of the coordinate frame
around the z axis are described by the matrices

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


If we restrict to rotations around the z axis, we can think of these as 2D
rotation matrices. This is a one-parameter family of matrices, parametrized
by the rotation angle θ.

(a) [5 pts.] Is multiplication of these 2D rotation matrices commutative?
Demonstrate using matrix multiplication, and then explain physically
why. (If needed, look up what ‘commutative’ means.)

(b) [4 pts.] Look up and report the definition of a GROUP in
mathematics (basic abstract algebra).

(c) [6 pts.] Show that the 2D rotation matrices form a group under
multiplication. Make sure you explicitly demonstrate all aspects of
the definition of a group (closure, associativity, identity and inverse.)

(d) [3 pts.] Explain whether the group of 2D rotations is abelian or
non-abelian. (If necessary, look up what these mean.)

(e) [2 pts.] We have found that, under 2D rotation of the coordinate
axes, the components of the displacement r transform via the matrix
given above. Argue why the components of any vector (e.g., velocity,
force, angular momentum,...) would transform the same way under
the same rotation.
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2. [6 pts.] What is the determinant of an orthogonal matrix?

What do positive and negative determinant physically mean for rotation
matrices?

Hint: First find out (or recall) whether the determinant of the product
of two matrices is the product of their determinants. Also: what is the
determinant of the transpose of a matrix?

3. Rotations in 3D.

(a) [4 pts.] By analogy, write the transformation matrix for counterclock-
wise rotation around the x-axis (rotation of the y-z plane). In other
words, write out the 3 × 3 matrix Rx(φ).

(b) [4 pts.] Show that Rz(θ) and Rx(φ) do not commute.

(c) [2 pts.] The set of all possible 3D rotations (by any angle, around any
axis) is known to be a group. Explain whether this group is abelian
or non-abelian.

(d) [4+3 pts.] An arbitrary 3D rotation matrix can be constructed by
successive rotations around the x-, y- and z- axes. Using this fact,
argue that all 3D rotation matrices are orthogonal. Using the same
fact, argue that all rotation matrices have unit determinant.

Hint: First find out whether the product of two orthogonal matrices
also orthogonal.

4. (a) [5 pts.] If A and B are two vectors, show that the scalar product
A · B is invariant under rotation of coordinate frames, Use the fact
that the rotation matrix R is orthogonal.

(b) [2 pts.] We’ve been using the rotation matrices to describe the
rotation of coordinate axes. Is this an active transformation or a
passive transformation? Explain why.


