Due on Monday, February 22nd.

Some amount of research (looking up and reading up, wikipedia or textbooks) might be necessary for this problem set.

1. 2D rotations.

In the previous problem set we found that rotations of the coordinate frame around the z axis are described by the matrices

 $R_z(\theta) = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$

If we restrict to rotations around the z axis, we can think of these as 2D rotation matrices. This is a one-parameter family of matrices, parametrized by the rotation angle θ .

- (a) [5 pts.] Is multiplication of these 2D rotation matrices commutative? Demonstrate using matrix multiplication, and then explain physically why. (If needed, look up what 'commutative' means.)
- (b) [4 pts.] Look up and report the definition of a GROUP in mathematics (basic abstract algebra).
- (c) [6 pts.] Show that the 2D rotation matrices form a group under multiplication. Make sure you explicitly demonstrate all aspects of the definition of a group (closure, associativity, identity and inverse.)
- (d) [3 pts.] Explain whether the group of 2D rotations is abelian or non-abelian. (If necessary, look up what these mean.)
- (e) [2 pts.] We have found that, under 2D rotation of the coordinate axes, the components of the displacement r transform via the matrix given above. Argue why the components of any vector (e.g., velocity, force, angular momentum,...) would transform the same way under the same rotation.

2. [6 pts.] What is the determinant of an orthogonal matrix?

What do positive and negative determinant physically mean for rotation matrices?

Hint: First find out (or recall) whether the determinant of the product of two matrices is the product of their determinants. Also: what is the determinant of the transpose of a matrix?

3. Rotations in 3D.

- (a) [4 pts.] By analogy, write the transformation matrix for counterclockwise rotation around the x-axis (rotation of the y-z plane). In other words, write out the 3×3 matrix $R_x(\phi)$.
- (b) [4 pts.] Show that $R_z(\theta)$ and $R_x(\phi)$ do not commute.
- (c) [2 pts.] The set of all possible 3D rotations (by any angle, around any axis) is known to be a group. Explain whether this group is abelian or non-abelian.
- (d) [4+3 pts.] An arbitrary 3D rotation matrix can be constructed by successive rotations around the x-, y- and z- axes. Using this fact, argue that all 3D rotation matrices are orthogonal. Using the same fact, argue that all rotation matrices have unit determinant. Hint: First find out whether the product of two orthogonal matrices also orthogonal.
- 4. (a) [5 pts.] If A and B are two vectors, show that the scalar product $\mathbf{A} \cdot \mathbf{B}$ is invariant under rotation of coordinate frames, Use the fact that the rotation matrix R is orthogonal.
 - (b) [2 pts.] We've been using the rotation matrices to describe the rotation of coordinate axes. Is this an *active transformation* or a *passive transformation*? Explain why.