In this problem set, we consider only 'standard' Lorentz boosts, i.e, we only consider frames that are coincident at the common zero time, and have relative velocities in the common $x$ direction.
Frame $\tilde{\Sigma}$ moves with velocity $v \hat{i}$ with respect to frame $\Sigma$. Here $\hat{i}$ is the unit vector along the common $x, \tilde{x}$ direction. Measurements of the same event from the two frames, $(x, y, z, t)$ and $(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{t})$, are related by the LT

$$
\tilde{x}=\gamma_{v}(x-v t) ; \quad \tilde{y}=y ; \quad \tilde{z}=z ; \quad \tilde{t}=\gamma_{v}\left(t-v x / c^{2}\right) .
$$

1. (a) [5 pts.] Using the LT, derive algebraically the invariance

$$
c^{2} \tilde{t}^{2}-\tilde{x}^{2}-\tilde{y}^{2}-\tilde{z}^{2}=c^{2} t^{2}-x^{2}-y^{2}-z^{2} .
$$

(In class we derived the LT from the invariance.)
(b) [1 pt.] Write down the inverse LT, i.e., $(x, y, z, t)$ in terms of $(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{t})$, using the fact that frame $\Sigma$ moves with velocity $-v \hat{i}$ with respect to frame $\tilde{\Sigma}$.
(c) [5 pts.] Invert the LT algebraically to find the inverse LT, i.e., determine $(x, y, z, t)$ in terms of $(\tilde{x}, \tilde{y}, \tilde{z}, \tilde{t})$ algebraically.
(d) [3 pts.] Two events have coordinates

$$
\begin{aligned}
& \left(x_{1}, 0,0, t_{1}\right) \quad \text { and }\left(x_{2}, 0,0, t_{2}\right) \quad \text { in the } \Sigma \text { frame; } \\
& \left(\tilde{x}_{1}, 0,0, \tilde{t}_{1}\right) \quad \text { and }\left(\tilde{x}_{2}, 0,0, \tilde{t}_{2}\right) \quad \text { in the } \tilde{\Sigma} \text { frame. }
\end{aligned}
$$

If $\tilde{x}_{1}=\tilde{x}_{2}=\tilde{X}$, what is the proper time interval between the two events? Explain why.
Relate the time interval between the two events as measured in frame $\Sigma$ with the time interval as measured in frame $\tilde{\Sigma}$.
(e) [6 pts.] In the $\Sigma$ frame, the points $A$ and $B$ are fixed and have spatial coordinates

$$
\left(x_{A}=L, y_{A}=0, z_{A}=0\right) \quad \text { and } \quad\left(x_{B}=4 L, y_{B}=4 L, z_{B}=0\right) .
$$

Find the time it takes for a light pulse emitted from point $A$ to reach point $B$, as measured in frame $\Sigma$ and as measured in frame $\tilde{\Sigma}$. If you use the LT, specify clearly which events you are using it for.
Is the time measured in one of the frames a proper time interval? Explain, which frame, or why not.
(f) [5 pts.] In the $\Sigma$ frame, two events occur at times $t_{1}=\frac{L}{c}$ and $t_{2}=\frac{L}{2 c}$, and have spatial coordinates

$$
\left(x_{1}=3 L, y_{1}=0, z_{1}=0\right) \quad \text { and } \quad\left(x_{2}=L, y_{2}=d, z_{2}=0\right)
$$

respectively. What is the speed $v$ if the two events are found to be simultaneous in frame $\tilde{\Sigma}$ ?
2. Let's omit the perpendicular directions $\left(y, y^{\prime}, z, z^{\prime}\right)$.

Using the rapidity $\phi=\tanh ^{-1}(v / c)$, the LT can be written as

$$
\binom{c \tilde{t}}{\tilde{x}}=\left(\begin{array}{cc}
\cosh \phi & -\sinh \phi \\
-\sinh \phi & \cosh \phi
\end{array}\right)\binom{c t}{x}=\Lambda(\phi)\binom{c t}{x}
$$

(a) [3 pts.] Show that two successive LT's, with rapidities $\phi_{1}$ and $\phi_{2}$, result in a LT of rapidtiy $\phi_{1}+\phi_{2}$. In other words, show via matrix multiplication that $\Lambda\left(\phi_{1}\right) \Lambda\left(\phi_{2}\right)=\Lambda\left(\phi_{1}+\phi_{2}\right)$.
(b) [4 pts.] The velocities corresponding to rapidities $\phi_{1}$ and $\phi_{2}$ are $v_{1}$ and $v_{2}$ respectively. Find the velocity corresponding to $\phi_{1}+\phi_{2}$, in terms of $v_{1}$ and $v_{2}$. How should we interpret this velocity?
(c) [3 pts.] The LT for rapidity $-\phi$ should be the inverse of the LT for rapidity $\phi$, i.e., we should have $\Lambda(-\phi)=[\Lambda(\phi)]^{-1}$. Show by matrix multiplication that $\Lambda(-\phi) \Lambda(\phi)$ is indeed the identity matrix.
(d) [6 pts.] Show that the set of Lorentz boosts in the $x$ direction, represented by the matrices $\Lambda$, form a group under successive application (i.e., under matrix multiplication).
(e) [2 pts.] Is this group (Lorentz boosts in the same direction) abelian or non-abelian? Explain why.
(f) [ $\mathbf{4}$ pts.] Remember that rotation matrices are orthogonal. Check whether the $\Lambda$ matrices are orthogonal. Explain why, or why not, in terms of an invariant.
(g) [3 pts.] Remember that rotation matrices have unit determinant. Check whether the Lorentz boost matrices $\Lambda$ have unit determinant.

