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Some solutions/hints for problem set 05.

I didn’t proofread carefully, so please be careful about typos.

−−−−−−−−−−−−− ?−−−−−−−−−−−−

1. Consider inertial frames Σ and Σ′ that are aligned at time t = t′ = 0. The
relative velocity of Σ′ with respect to Σ is ~v, not necessarily aligned with one
of the axes. The transformation from (t, ~r) to (t′, ~r′) is

t′ = γv

(
t− ~v · ~r

c2

)
; ~r′ = ~r + αv(~v · ~r)~v − γv~vt

where v = |~v| and αv =
γv − 1

v2
=

γ2v/c
2

γv + 1
.

(a) Derive these transformation equations, by generalizing the standard form (for
~v = vî) used previously. It is helpful to decompose the position vector as

~r = ~r‖ + ~r⊥, parallel and perpendicular to ~v, so that ~r‖ =
(~v · ~r)
v2

~v, and then

to start by writing the equations for (~r‖)
′ and (~r⊥)′ separately.

(Partial) Solution/Hint →

Defining ~r = ~r‖+~r⊥, we note that ~r‖ should take the role of xî in the standard
form. Thus the standard-form LT for time

t′ = γv(t− vx/c2) = γv(t− ~v · (xî)/c2)

is replaced by
t′ = γv(t− ~v · ~r‖/c2) = γv(t− ~v · ~r/c2)

as claimed. The transformations for the spatial coordinates are

x′ = γv(x− vt) or x′̂i = γv(xî− ~vt)
y′ = y z′ = z

in the standard form. Therefore, for ~v in arbitrary direction we have

~r′‖ = γv(~r‖ − ~vt)
~r′⊥ = ~r⊥

Adding, we get

~r′ = ~r⊥ + γv(~r‖ − ~vt) = ~r + (γv − 1)~r‖ − γv~vt

= ~r + (γv − 1)
(~v · ~r)
v2

~v − γv~vt = ~r + αv(~v · ~r)~v − γv~vt

— * —
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(b) Show that c2t2 − ~r · ~r is invariant under this transformation.

(Partial) Solution/Hint →

I omit subscript v and write γ and α for this problem, since there is only one
speed relevant for these functions. In problems involving multiple velocities,
one should be more careful about the argument of γ.

c2t′2 − ~r′ · ~r′

= c2γ2
(
t− ~v · ~r

c2

)2

− [~r + α(~v · ~r)~v − γ~vt] · [~r + α(~v · ~r)~v − γ~vt]

=

[
c2γ2t2 − 2γ2(~v · ~r)t+

γ2

c2
(~v · ~r)2

]
−

[
~r · ~r + α2(~v · ~r)2v2 + γ2v2t2 + 2α(~v · ~r)2 − 2γ(~v · ~r)t− 2αγ(~v · ~r)v2t

]

=
[
γ2(c2 − v2)t2 − ~r · ~r

]
+

[
− γ2 + γ + αγv2

]
2(~v · ~r)t

+

[
γ2

c2
− 2α− α2v2

]
(~v · ~r)2

The first group is equal to c2t2 − ~r · ~r, because γ2(c2 − v2) = c2. The other
two terms disappear, because:

−γ2 + γ + αγv2 = − (γ2 − γ) +
γ2 − γ
v2

v2 = 0

and

γ2

c2
− 2α− α2v2 =

γ2

c2
− 2γ2/c2

γ + 1
+

(
γ2/c2

γ + 1

)2

c2
(

1− 1

γ2

)
=

γ2

c2

(
1− 2

γ + 1

)
− γ4/c2

(γ + 1)2
γ2 − 1

γ2
=

γ2

c2

(
γ − 1

γ + 1

)
− γ2

c2

(
γ − 1

γ + 1

)
= 0

Thus
c2t′2 − ~r′ · ~r′ = c2t2 − ~r · ~r

i.e., �

�

�

�
c2t2 − ~r · ~r = c2t2 − x2 − y2 − z2 is an

invariant for Lorentz boosts in any direction,
not only for boosts in the x-direction.

— * —
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(c) Expressing ~v = (vi, v2, v3) and ~r = (x, y, z) in Cartesian components, express
the transformation as a matrix equation, i.e., find the matrix Λ that transforms
from (ct, x, y, z) to (ct′, x′, y′, z′).

(Partial) Solution/Hint →

Breaking up into components (shorthanding γ = γv and α = αv ) gives

ct′ = γ(ct)− γ
(v1
c

)
x− γ

(v2
c

)
y − γ

(v3
c

)
z

x′ = x+ α(v1x+ v2y + v3z)v1 − γv1t

= − γ
(v1
c

)
(ct) + (1 + αv21)x+ αv1v2y + αv1v3z

and y′ and z′ can be written similarly. The matrix is (wriiten with c = 1)
γ −γv1 −γv2 −γv3
−γv1 1 + αv21 αv1v2 αv1v3
−γv2 αv1v2 1 + αv22 αv2v3
−γv3 αv1v3 αv2v3 1 + αv23


To put c back again, replace all γvi by γ

vi
c

.

— * —

(d) Find out whether the matrix Λ is symmetric or not. Contrast with rotation
matrices.

(Partial) Solution/Hint →

Symmetric.

This is the most general Lorentz boost. Hence Lorentz boost matrices are
always symmetric.

In contrast, rotation matrices are NOT symmetric. (In fact, check that the
matrix for rotations around the z axis are even anti-symmetric.)

The fact that boost matices are symmetric but rotation matrices are not, is
helpful in showing that the set of all boosts does not satisfy closure. (Why?)

— * —
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(e) Show that the transformation matrix satisfies

ΛTgΛ = g , where g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


is called the metric tensor or Minkowski metric. This is somewhat messy, so
it’s okay if you prove an easier version by setting v3 = 0.

(Partial) Solution/Hint →

This is a long and messy, but straightforward, calculation. I will not type it
up.

Note that, if you set v3 = 0, you can do a multiplication of 3 × 3 matrices
instead of 4× 4 matrices.

The relation ΛTgΛ = g is important: it is the condition for preserving the
invariant interval in the transformation. In fact, this equation is (usually)
taken as the definition of Lorentz transformations, although this definition
includes some non-physical transformations, such as improper rotations and
non-orthochronous transformations.

— * —

2. The relationship ΛTgΛ = g is regarded as the definition of Lorentz trans-
formations. (A matrix Λ satisfying this relationship describes a Lorentz
transformation.)

(a) If the matrix Λ is a Lorentz transformation, show that it has determinant
of unit magnitude.

(Partial) Solution/Hint →

Using the fact that det(g) = 1 and det(MT ) = det(M),

ΛTgΛ = g =⇒ det(ΛTgΛ) = det(g)

=⇒ det(ΛT ) det(g) det(Λ) = 1 =⇒ det(Λ)2 = 1

=⇒ det(Λ) = ±1

— * —
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(b) Look up the topic of sign conventions for the Minkowski metric. Write
down the matrix g in the other common convention.

(Partial) Solution/Hint →

There are two common conventions. In the other convention, the
Minkowski metric is

g =


−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1


One can describe our matric as the metric with trace -2 and the second
metric as that with trace +2. One also reads about the (+ − −−)
convention versus the (−+ ++) convention.

Our convention (+−−−) means that we use c2dt2−d~r·d~r as the invariant
interval, while the other convention (− + ++) corresponds to using d~r ·
d~r − c2dt2 as the invariant interval. There is no physical difference.

— * —
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3. The following problems are about relativistic velocity addition.

(a) Two rockets approach each other, as observed from earth, each with speed
u. What is the relative speed of one rocket as seen from the other?

(Partial) Solution/Hint →

This is longitudinal (one-dimensional) velocity addition.

u+ u

1 +
u · u
c2

=
2u

1 + u2/c2

Question: What if the speed of each rocket is 3
4
c. Would the relative

speed be larger than the speed of light?

— * —

(b) Sketch the situation considered in 3a from the earth’s frame and from
the frame of one of the rockets. In both figures, mark each object (earth,
first rocket, second rocket) with an arrow and expression, representing
the direction and magnitude of the velocity of that object.

(Partial) Solution/Hint →

|v|=u |v|=u

v=0
|v|=u

v=0

Earth frame Rocket frame

(1+u2/c2)

2u
|v|= -------------

— * —
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(c) A car moves leftward at speed v, while a light pulse moves rightward with
speed c toward the car. Use the velocity addition formula to find out,
from the perspective of the car driver, how fast the light pulse approaches.
Explain why the answer is expected.

(Partial) Solution/Hint →

Longitudinal (one-dimensional) velocity addition; no transverse compo-
nents involved.

v + c

1 +
v · c
c2

=
v + c

1 + v/c
= c

This is expected, because the speed of light is supposed to be the same
no matter which frame the observer is in.

— * —

(d) Two rockets P and Q approach each other on a collision course, moving
(relative to the moon) at speeds 3

5
c and 2

5
c respectively. Find the speed

of rocket Q as observed by an occupant of P .

(Partial) Solution/Hint →

vQ + vP

1 +
vQvP
c2

=

3c

5
+

2c

5

1 +
3c
5

2c
5

c2

=
c

1 + 6/25
=

25

31
c

— * —

(e) Spacecrafts A and B are traveling in the same direction with speeds 4c/5
and 3c/5 respectively, as seen from earth. (A is chasing B from behind.)
Find the speed of A as seen from B.

(Partial) Solution/Hint →

|vA| − |vB|

1− |vAvB|
c2

=

4c

5
− 3c

5

1−
4c
5

3c
5

c2

=
c/5

1− 12/25
=

5

13
c

— * —
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(f) Following from previous problem: Spacecraft C is between A and B, and
traveling in the same direction. The passengers on C see the other two
spacecrafts approaching C from opposite directions at the same speed.
What is the speed of C as seen from earth? [Hint: You will need to solve
a quadratic equation. Only one solution of the equation is physically
acceptable; mention why.]

(Partial) Solution/Hint →

vAC =
|vA| − |vC |

1− |vAvC |
c2

=

4c

5
− |vC |

1−
4c
5
|vC |
c2

=

 4

5
− β

1− 4

5
β

 c where β = |vC |c

vBC =
|vB| − |vC |

1− |vBvC |
c2

=

3c

5
− |vC |

1−
3c
5
|vC |
c2

=

 3

5
− β

1− 3

5
β

 c =

(
3− 5β

5− 3β

)
c

C sees both A and B approach her at the same speed, hence vAC = −vBC :(
4− 5β

5− 4β

)
c = −

(
3− 5β

5− 3β

)
c

=⇒ (4− 5β)(5− 3β) + (5− 4β)(3− 5β) = 0

=⇒ 35β2 − 74β + 35 = 0

=⇒ 35β2 − 25β − 49β + 35 = 0

=⇒ 5β(7β − 5)− 7β(7β − 5) = 0

=⇒ (7β − 5)(5β − 7) = 0 β =
5

7
or β =

7

5

which means vC = 5
7
c or vC = 7

5
c. The second possibility is unacceptable

because physical speeds are always < c.

— * —
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(g) A rocket M moves at speed u directly away from earth. It emits a
bullet at speed v perpendicular to the direction of its motion. Measured
with respect to earth, what are the velocity components of the bullet?
Measured with respect to earth, what is the speed of the bullet?

(Partial) Solution/Hint →

The bullet has velocity u in the direction of the rocket motion and
v

γu
in

the perpendicular direction. Hence speed is√
u2 +

(
v

γu

)2

— * —


