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1. Consider the set of real 4× 4 matrices Λ which satisfy the relation

ΛTgΛ = g ,

where g is the metric tensor.

(a) Show that this set is a group under matrix multiplication.

(Partial) Solution/Hint →

To be a group, the properties of Closure, Associativity, Existence of
Identity, and Existence of Inverse must be satisfied.

Closure: If Λ1 and Λ2 are members of the set, then ΛT
1 gΛ1 = g and

ΛT
2 gΛ2 = g. Then(
Λ1Λ2

)T
g
(

Λ1Λ2

)
=
(

ΛT
2 ΛT

1

)
g
(

Λ1Λ2

)
= ΛT

2

(
ΛT

1 gΛ1

)
Λ2 = ΛT

2 gΛ2 = g

which means that Λ1Λ2 is also a member of the set.

Associativity: Matrix multiplication is known to be associative.

Identity: The 4× 4 identity matrix

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


is a member of the set, because

ITgI = Ig = g

Hence the set contains an identity element.

Note that just pointing to the 4 × 4 identity matrix I is not enough:
one has to explicitly show that I belongs to this particular set.

Inverse: If Λ is an element of the set, ΛTgΛ = g by definition. To
show that the matrix inverse Λ−1 also belongs to the set, multiply
both sides by (Λ−1)T on the left and by Λ−1 on the right:(

Λ−1
)T(

ΛTgΛ
)

Λ−1 =
(
Λ−1

)T
gΛ−1

The left side is((
Λ−1

)T
ΛT
)
g
(

ΛΛ−1
)

=
(

ΛΛ−1
)T
gI = ITg = g
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so that we have obtained

g =
(
Λ−1

)T
gΛ−1

i.e., the inverse of Λ satisfies the defining equation and hence belongs
to the set.

These four properties show that the set defined by ΛTgΛ = g is a
group under matrix multiplication.

— —

Note: the group of 4 × 4 matrices which satisfy ΛTgΛ = g is known
as the LORENTZ GROUP. The results below will show that Lorentz
boosts belong to this group (as expected), but also, that ROTATIONS
belong to this group. The Lorentz group consists of all boosts, all
rotations, and all combinations of these. It is denoted as O(3, 1) or
O(1, 3).

In fact, the Lorentz group as defined by the condition ΛTgΛ = g
also contains reflections (improper rotations) and time reversal (non-
orthchronous transformations). We might regard these as unphysical,
so it is common to add two more conditions:

det[Λ] = +1 and Λ0
0 > 0

With these two conditions, one obtains a subset of the Lorentz group,
usually called the RESTRICTED LORENTZ GROUP. This set is
denoted as SO↑(3, 1). The S stands for ‘special’ (positive determinant)
and the ↑ indicates the orthochronous condition.

— * —
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(b) Write down the matrix transforming (ct, x, y, z) to (ct′, x′, y′, z′), for
a standard Lorentz boost in the common x, x′ direction. Find out
whether this matrix belongs to the above set.

(Partial) Solution/Hint →

The Lorentz boost matrix in the x direction is

Bx =


γv −γv

v

c
0 0

−γv
v

c
γv 0 0

0 0 1 0
0 0 0 1

 =


γv −γvv 0 0
−γvv γv 0 0

0 0 1 0
0 0 0 1


where I use c = 1 for notational simplicity.

We need to find out whether this matrix satisfies

(Bx)T g Bx = g

Since (Bx)T = Bx, we have

(Bx)T g Bx = Bx g Bx

=


γv −γvv 0 0
−γvv γv 0 0

0 0 1 0
0 0 0 1




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




γv −γvv 0 0
−γvv γv 0 0

0 0 1 0
0 0 0 1



=


γv +γvv 0 0
−γvv −γv 0 0

0 0 −1 0
0 0 0 −1




γv −γvv 0 0
−γvv γv 0 0

0 0 1 0
0 0 0 1


Using γv = 1/

√
1− v2, this turns in a couple lines of calculation to

(Bx)T g Bx =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = g

— * —
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(c) Write down the matrix transforming (ct, x, y, z) to (ct′, x′, y′, z′), for
a rotation of the coordinate frame around the common z, z′ axis.
(There is no relative velocity between the frames). Find out whether
this rotation matrix belongs to the above set.

(Partial) Solution/Hint →

Lrot =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1


Does it belong to the set?

(Lrot)
T gLrot =


1 0 0 0
0 cos θ − sin θ 0
0 + sin θ cos θ 0
0 0 0 1

 g


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1



=


1 0 0 0
0 cos θ − sin θ 0
0 + sin θ cos θ 0
0 0 0 1




1 0 0 0
0 − cos θ − sin θ 0
0 + sin θ − cos θ 0
0 0 0 −1



=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = g

=⇒ Yes it does

Although we have obtained the condition ΛTgΛ = g from the
requirement of the invariant interval known from Lorentz boosts,
it appears that we cannot ignore rotations as they also satisfy this
condition.

In fact, boosts and rotations are strongly connected. We also learned
previously that two successive boosts might not be a pure boost but
rather a combination of a boost and a rotation.

Physically, the (restricted) Lorentz group SO↑(3, 1) or SO↑(1, 3)
consists of all boosts, all rotations, and all combinations of boosts
and rotations.

— * —



MP352, Spring 2021, Prob-set 08, some solutions page 5

2. Relative to frame Σ, frame Σ′ has velocity v in the common x, x′ direction.
A photon has velocity

~u′ = (
3

5
c, 0,

4

5
c)

relative to Σ′. Find the velocity of the photon relative to Σ.

Find out whether your result is consistent with the constancy of the speed
of light.

(Partial) Solution/Hint →

I will use c = 1 units.

ux =
u′x + v

1 + u′xv
=

3
5

+ v

1 + 3
5
v

=
3 + 5v

5 + 3v

uy =
u′y

γv(1 + u′xv)
= 0

uz =
u′z

γv(1 + u′xv)
=

4
5

γv
(
1 + 3

5
v
) =

4

γv (5 + 3v)
=

4
√

1− v2
5 + 3v

The speed of the photon should be c = 1 in any frame. It works as given
for the Σ′ frame, because u′2 = (3

5
)2 + (4

5
)2 = 1. For the Σ frame,

u2 =

(
3 + 5v

5 + 3v

)2

+ (0)2 +

(
4
√

1− v2
5 + 3v

)2

=
(3 + 5v)2 + 16(1− v2)

(5 + 3v)2
=

9 + 30v + 25v2 + 16− 16v2

(5 + 3v)2

=
25 + 30v + 9v2

(5 + 3v)2
=

(5 + 3v)2

(5 + 3v)2
= 1

— * —
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3. A neutral pion has mass M and is traveling with speed v when it decays
into two photons. The photons are seen to emerge at equal angles θ on
either side of the original velocity. Show that v = c cos θ.

(As usual with decay/reaction problems, draw clear before & after pictures,
write equations for conservation of energy and momentum, choosing the
variables more suitable for the problem [express in terms of speeds and γ’s,
or in terms of momenta?], and then work with those equations.)

(Partial) Solution/Hint →

M v

hf1

BEFORE

AFTER

hf2

It’s important to draw SEPARATE pictures for the situation before and
the situation after. If you try representing everything on the same picture,
you are much more likely to confuse yourself when writing down the
conservation equations.

If the pictures are drawn reasonably, you should be able to write down
energy and momentum conservation equations. I write them in terms of
speeds, since the desired result concerns the speed.

Energy conservation:
γvMc2 = hf1 + hf2

I’ve introduced notation f1 and f2 for the frequencies of the two photons.
When you introduce new notation in your assignments of exams, please do
state clearly what you have introduced.
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Momentum conservation in the original direction of pion motion:

γvMv =
hf1
c

cos θ +
hf2
c

cos θ

Momentum conservation in the direction perpendicular to the original
velocity:

0 =
hf1
c

sin θ − hf2
c

sin θ

The last equation gives f1 = f2. The first equation then yields hf1 =
1
2
γvMc2, which, when put into the second equation, gives

γvMv = 2(1
2
γvMc2) cos θ =⇒ v = c cos θ

————-

Note: if we wanted the momentum of the pion instead of the speed, it
would have been better to work in terms of momenta instead of in terms
of speeds. We would then write the conservation equations as√

p2c2 +m2c4 = hf1 + hf2 (energy conservation)

p =
hf1
c

cos θ +
hf2
c

cos θ (momentum conservation)

— * —
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4. A particle of rest mass M , while at rest in the laboratory, decays into a
particle of mass m and speed v, and a photon of frequency f moving in
opposite direction. Relativistic momentum and energy is conserved in this
process.

(a) Draw the situations before and after the decay process, as seen in the
laboratory frame. Please indicate the velocity of each particle.

(Partial) Solution/Hint →

Before: particle of mass M at rest

After: particle of mass m moving leftward at speed v, photon of
frequency f moving rightward at speed c.

Or, equally correct if mass m moves rightward and photon moves
leftward.

M

mv hf

BEFORE

AFTER

Warning (yet again): note how the before and after situations are two
separate sketches. Trying to depict both before and after situations
onto a single picture will likely just confuse.

— * —
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(b) Write down the equations for momentum conservation and energy
conservation (in the laboratory frame).

(Partial) Solution/Hint →

Momentum conservation: 0 =
hf

c
− γ(v)mv

Energy conservation: Mc2 = hf + γ(v)mc2

— * —

(c) Use these equations to calculate m as a function of M and v.

(Partial) Solution/Hint →

Eliminating hf yields

Mc2 = γ(v)mvc+ γ(v)mc2

=⇒ m =
Mc

γ(v)× (c+ v)
= M

c
√

1− (v/c)2

c+ v
= M

√
c− v
c+ v

— * —

(d) Show that the photon frequency is given by

hf =
Mvc2

c+ v

in the lab frame.

(Partial) Solution/Hint →

From the momentum conservation equation,

hf = γ(v)mvc =

(
c√

c2 − v2

)(
M

√
c− v
c+ v

)
vc =

Mvc2

c+ v

— * —
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(e) Now work in the frame moving at speed v; in this frame the particle
of mass m is at rest after the decay. Draw the situations before and
after the decay process, as seen in this frame. Do indicate the speeds.

(Partial) Solution/Hint →

Before: particle of mass M moving rightward at speed v

After: particle of mass m at rest, photon of frequency f ′ moving
rightward at speed c.

M

m

v

hf'

BEFORE

AFTER

— * —

(f) Write down the equations of momentum conservation and energy
conservation in this frame.

(Partial) Solution/Hint →

Momentum:
γvMv = 0 + hf ′/c

Energy:
γvMc2 = mc2 + hf ′

— * —
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(g) Solve for m (as a function of M and v) to show that you get the same
expression for m as you did by working in the laboratory frame.

Why should you expect the same expression?

(Partial) Solution/Hint →

Eliminating hf ′,

γvMc2 = mc2 + γvMvc

=⇒ m = γvM − γvMv/c = Mγv (1− v/c)

=⇒ m = M
1− v/c√
1− v2/c2

= M

√
c− v
c+ v

Same expression as before obtained.

This is expected because the mass of objects is an invariant under
Lorentz transformations and is not frame-dependent.

— * —
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(h) Solve for the photon frequency to show that you get a different
frequency, compared to the lab frame.

(Partial) Solution/Hint →

hf ′ = γvMvc =
Mvc√

1− v2/c2
=

Mvc2√
c2 − v2

which is quite different from hf =
Mvc2

c+ v
.

— * —

(i) The photon frequency is different, when observed from a different
frame! Explain the factor between observed frequencies using the
longitudinal Doppler effect.

(Partial) Solution/Hint →

The source of the photon (the particle that decayed) is at rest in the
lab frame. Hence, observing it from a frame moving in the opposite
direction, the frequency will be observed to be larger by a factor√

(c+ v)/(c− v).

Is this consistent with the frequency expressions we have calculated?

f ′/f =

Mvc√
1− v2/c2
Mvc2√
c2 − v2

=

√
c+ v

c− v
.

— * —


