1. $A=\left(A^{0}, A^{1}, A^{2}, A^{3}\right)$ and $B=\left(B^{0}, B^{1}, B^{2}, B^{3}\right)$ are 4 -vectors. Under a Lorentz transformation from frame Σ to $\tilde{\Sigma}$, the components of A transform as

$$
\begin{array}{cl}
\tilde{A}^{0}=\gamma_{v}\left(A^{0}-\frac{v}{c} A^{1}\right), & \tilde{A}^{1}=\gamma_{v}\left(A^{1}-\frac{v}{c} A^{0}\right), \\
\tilde{A}^{2}=A^{2} \cos \theta+A^{3} \sin \theta, & \tilde{A}^{3}=-A^{2} \sin \theta+A^{3} \cos \theta .
\end{array}
$$

(a) $[2 \mathrm{pts}]$ Write down the transformations for the components of B.
(b) $[6 \mathbf{p t s}]$ Show that the inner product, defined as

$$
A \star B=A^{0} B^{0}-A^{1} B^{1}-A^{2} B^{2}-A^{3} B^{3},
$$

is invariant under this transformation.
(c) [2 pts] The Lorentz transformation described here consists of a boost and a rotation. Describe in words how frame $\tilde{\Sigma}$ is moving and oriented with respect to frame Σ.
(d) [SELF] Write the given transformations (for the components of A) as a matrix equation.
2. In the lab frame, particle B moves to the right with speed u, and particle C moves to the left with speed v. In the frame of C, particle B is seen to move to the right with speed w, while particle C itself is of course at rest.
Of course, w can be written down in terms of u and v using the velocity addition formula, but we will re-derive this formula below using 4 -velocities.
I encourage you to use $c=1$ units for this problem. (But you can choose.)
(a) [$\mathbf{3} \mathbf{~ p t s}]$ In the lab frame, write down the 4 -velocities for particle B and for particle C.
(b) $[3 \mathrm{pts}]$ In C 's frame, write down the 4 -velocities for B and C.
(c) [3 pts] The inner product of the two 4 -velocities should be invariant. Write down an equation equating the inner product in the two frames.
(d) [3 pts] From the inner product invariance, derive an expression for γ_{w} in terms of $\gamma_{u}, \gamma_{v}, u$ and v. (This equation should be familiar.)
(e) $[\mathbf{3} \mathbf{p t s}]$ From the equation relating γ 's, derive an expression for w in terms of u and v. You should have recovered a familiar formula.
3. (Compton scattering.) A photon of wavelength λ collides with a stationary electron. After the collision, the photon scatters at an angle θ with respect to the incident direction, and has wavelength λ^{\prime}. The electron moves with momentum p_{e} after the collision, in a direction making angle ϕ with the incident direction of the photon.
(a) [$\mathbf{3} \mathbf{~ p t s}]$ Draw the situations before and after, clearly showing everything relevant.
(b) [6 pts] Write down the equation for energy conservation, and two equations for momentum conservation. (Since momentum is a vector, you have one equation for each relevant direction.)
(c) $[\mathbf{6} \mathbf{p t s}]$ Show that

$$
\lambda^{\prime}=\lambda+\frac{h}{m c}(1-\cos \theta)
$$

Hint: you don't need to introduce velocity. If you need to transform between energy and momentum, use the relation $E^{2}=p^{2} c^{2}+m^{2} c^{4}$.
4. Frames Σ and Σ^{\prime} are aligned at $t=t^{\prime}=0$, and Σ^{\prime} moves with velocity v relative to Σ in the common x, x^{\prime} direction.
(a) [2 pts] Represent (draw) both frames on a common spacetime diagram such that the ct and x axes are perpendicular. What angles are made by the $c t^{\prime}$ and x^{\prime} axes? How are the units for x^{\prime} related to the units for x ?
(b) [SELF] A stick of length L lies at rest in the Σ^{\prime} frame, with one end at the origin of the Σ^{\prime} frame. Draw the world sheet of the stick.
(c) [8 pts] Calculate geometrically the length of the stick measured in the Σ frame. (This will require careful drawings, so please do not submit your first attempt - first work out on rough paper what you want to present, and then produce neat drawings.)

