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Here are some hints or partial answers for problem set 11.

As usual, these were not proofread carefully, so please watch out for
typographical or other errors.

−−−−−−−−−−−−− ?−−−−−−−−−−−−

1. Collision/decay problems.

(a) Two photons have the same energy Eγ. The collide at an angle θ and
create a single particle. Calculate the mass M of the final particle in
terms of Eγ and θ.

(Partial) Solution/Hint →

By symmetry, the final particle must have momentum in a direction
bisecting the trajectories of the two particles. In other words, the two
photon momenta must each have angle θ/2 with the direction of motion
of the final particle.

(This can be worked out more elaborately by starting with an unknown
angle for the final particle motion and using momentum conservation in
two perpendicular directions to calculate this angle.)

Based on the before-&-after figures (which you MUST have drawn,
surely?), we will write the energy and momentum conservation. In this
case, there is no clear advantage in working with the speed formulae or
with the momentum formulae, because the question doesn’t ask to express
anything in terms of the final speed or the final momentum. Either choice
should work. Both possible calculations are shown below.

Using speeds.

Let’s first try working with the speed formulae, denoting the speed of the
final particle as v. Energy and momentum conservation give:

Energy: Eγ + Eγ = γvMc2

Momentum:
Eγ
c

cos(θ/2) +
Eγ
c

cos(θ/2) = γvMv

Dividing, we get

v = c cos(θ/2)

=⇒ γv =
1√

1− (v/c)2
=

1√
1− cos2(θ/2)

=
1

sin(θ/2)
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Therefore

M =
2Eγ
γvc2

=
2Eγ
c2

sin(θ/2)

Using momenta.

Alternately, we could work with the momentum. Denoting the final
particle momentum by p, the energy and momentum conservation
equations are

Energy: Eγ + Eγ =
√
p2c2 +M2c4

Momentum:
Eγ
c

cos(θ/2) +
Eγ
c

cos(θ/2) = p

Substituting from the second equation into the first, we obtain

2Eγ =
√

4E2
γ cos2(θ/2) +M2c4

=⇒ M2c4 = 4E2
γ − 4E2

γ cos2(θ/2) = 4E2
γ sin2(θ/2)

=⇒ M =
2Eγ
c2

sin(θ/2)

Thus the required expression can be obtained working either in terms
of speed (E = γvMc2, p = γvMv) or in terms of momentum (E =√
p2c2 +M2c2).

NOTE! If you find yourself trying to solve such problems without
drawing the before-&-after pictures, something is seriously wrong.
You will almost certainly not get the correct answer.

Reminder.

For massive particles, we can work either using the speed v or the
momentum p.

If using the speed v, the formulae are

energy = γv(mass)c2 , momentum = γv(mass)v .

If using the momentum p, the formulae are

energy =
√
p2c2 + (mass)2c4 , momentum = p .

Make sure you know all these expressions. In the problem above, either
choice works: working with speed or working with momentum. In general,
you need to make a choice based on what is asked for or given in the
question.

— * —
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(b) Two balls of equal mass (m each) approach each other with equal but
opposite velocities of magnitude v. Their collision is perfectly inelastic,
so they stick together and form a single body of mass M . What is the
velocity of the final body and what is its mass M?

Find the mass M in the specific cases of v = 0.01c, v = 0.5c, and v = 0.9c.

(Partial) Solution/Hint →

The final velocity is zero from symmetry. Alternately, you could assume
a final velocity Vf , and write down the momentum conservation equation:

γ(v)mv − γ(v)mv = γ(Vf )MVf

which gives Vf = 0.

NOTE! Above, the γ on the right side is different from
the γ’s on the left side. When writing a γ, it is essential
to be clear which speed it corresponds to.

The energy conservation equation gives

γ(v)mc2+γ(v)mc2 = γ(0)Mc2 =⇒ M = 2γ(v)m =
2m√

1− v2/c2

Using v = 0.01c yields

M =
2√
0.99

m ≈ 2.01m

Using v = 0.5c yields

M =
2√
0.75

m ≈ 2.31m

Using v = 0.9c yields

M =
2√
0.19

m ≈ 4.59m

— * —
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2. The four-vector Aµ is found to be timelike in one inertial frame.

(a) Write an inequality expressing the fact that Aµ is timelike.

(Partial) Solution/Hint →

Timelike means that the zero (‘time’) component of the 4-vector dom-
inates over the magnitude of the 3-vector part (‘space’ part). In other
words (

A0
)2
>
(
A1
)2

+
(
A2
)2

+
(
A3
)2

or (
A0
)2 − (A1

)2 − (A2
)2 − (A3

)2
> 0

Clearly, this can be expressed in terms of the norm-squared.

In the metric convention we have been using in class (diagonal elements
of metric are +1, −1, −1, −1), this is expressed as

AµA
µ > 0 or gµνA

µAν > 0

i.e., timelike means that the norm-squared is positive. This is because, in
the +−−− convention, the norm-squared is

gµνA
µAν =

(
A0
)2 − (A1

)2 − (A2
)2 − (A3

)2
Note 1: this is the norm-squared, not the norm. It’s best not to talk
about the norm itself, because that can be either real or imaginary.

Note 2: the notation |Aµ| is generally NOT used for Minkowski norms.
This notation is associated too strongly with a positive real quantity,
Please avoid! In fact, just avoid talking about the norm and stick to
norm-squared.

The other convention: If the metric is taken to have diagonal elements
−1, +1, +1, +1 (as is common in general relativity), then the norm-
squared has opposite sign, i.e.,

gµνA
µAν = −

(
A0
)2

+
(
A1
)2

+
(
A2
)2

+
(
A3
)2

This means, in the other convention, timelike corresponds to negative
norm-squared, i.e.,

Other convention:

{
gµνA

µAν < 0 timelike

gµνA
µAν > 0 spacelike

Irrespective of convention, timelike still means that the 0 component
dominates, and spacelike means that the 123 components dominate.
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— * —

(b) Explain why Aµ has to be timelike in any inertial frame.

(Partial) Solution/Hint →

The norm of a 4-vector is invariant under Lorentz transformations, i.e.,
the same in every inertial frame. Therefore if the norm-squared is positive
in one reference frame, it will be positive in every reference frame. i.e., if
Aµ is timelike in one intertial frame, it has to be timelike in any inertial
frame.

— * —

3. The mass m and the charge q of a particle are four-scalars. Explain why the
combination

(m, q,m, q)

is not a four-vector.

(Partial) Solution/Hint →

Since m and q do not change under Lorentz transformations, the elements of
the above quadruplet do not transform like a 4-vector should, i.e., they do not
transform according to Lorentz transformations.

— * —
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4. Electromagnetism.

(a) Show that the tensor equation ∂µJ
µ = 0 is equivalent to the continuity

equation of electromagnetism. Here Jµ is the current density 4-vector.

(Partial) Solution/Hint →

The 4-vector is defined as

Jµ =
(
cρ, ~J

)
= (cρ, Jx, Jy, Jz) or Jµ = µ0 (cρ, Jx, Jy, Jz)

For the purposes of this problem, a constant factor will not matter, so
let’s use the first definition.

The tensor equation ∂µJ
µ = 0 becomes, after writing out the summation

over the contracted indices,

∂0J
0 + ∂1J

1 + ∂2J
2 + ∂3J

3 = 0

The zeroth term is

∂0J
0 =

∂

∂x0
J0 =

∂

∂(ct)
J0 =

∂

∂(ct)
J0 =

1

c

∂

∂t
J0 =

1

c

∂

∂t
(cρ) =

∂ρ

∂t

The other (‘spatial’) terms are

∂1J
1 + ∂2J

2 + ∂3J
3 =

∂

∂x1
J1 +

∂

∂x2
J2 +

∂

∂x3
J3

=
∂

∂x
Jx +

∂

∂y
Jy +

∂

∂z
Jz = ~∇ · ~J

Thus in 3-vector notation the tensor equation becomes

∂ρ

∂t
+ ~∇ · ~J = 0

which is the continuity equation.

— * —
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(b) The two inhomogeneous Maxwell’s equations can be expressed as the
tensor equation for the field tensor F µν :

∂µF
µα = Jα

Derive the continuity equation from this equation, using the fact that the
field tensor is antisymmetric.

(Partial) Solution/Hint →

The continuity equation involves a 4-gradient of the current 4-vector;
hence we should use the equation ∂µF

µα = Jα to obtain a 4-gradient of
Jα. This is obtained by applying the operator ∂α to both sides, so that
the index α is contracted (summed over):

∂α∂µF
µα = ∂αJ

α (1)

The double sum on the left can be seen to be equal to its own negative,
and hence zero, due to antisymmetry of the field tensor:

∂α∂µF
µα = ∂α∂µ (−Fαµ) = − ∂µ∂αFαµ = − ∂α∂µF µα

In the last step, the indices have been switched, which we are allowed to
do because they are dummy indices. Thus the quantity ∂α∂µF

µα is zero.

The left side of Eq. (1) being zero, the right side should be zero as well;
hence

∂αJ
α = 0

which is the continuity equation.

— * —
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5. Minkowski tensors.

(a) Consider the Minkowski tensors

Dµν , DµνBσ , DµσBσ , DµσDµσ , CµBµ , CµBσ .

Explain the rank of each tensor.

Which of these, if any, are scalars?

(Partial) Solution/Hint →

Dµν is a tensor of rank 2. Both indices are contravariant; we could say it
is a contravariant tensor of of rank 2.

DµνBσ can be written in the form DµνBσ = T µνσ. It is a tensor of (total)
rank 3, since there are three indices. It is neither fully contravariant nor
fully covariant; sometimes called a mixed tensor. You could also refer to
it as a tensor of rank (2, 1).

DµσBσ =
∑

σD
µσBσ. Now the fun begins. The σ index is repeated and

hence summed over, it’s a dummy index. The result has only one index
left. The quantity is a contravariant tensor of rank one, i.e., it’s just a
contravariant vector:

DµσBσ = Aµ for some 4-vector Aµ

DµσDµσ is a scalar, as both indices are summed over and there are no
free (not contracted) indices remaining.

CµBµ is a scalar, as µ is summed over and there are no un-contracted
idices left. In other words, this is the inner product of two four-vectors
and hence a scalar: CµBµ = gµνC

µBν .

CµBσ is a mixed tensor of rank 2:

CµBσ = Uµ
σ

Among the examples above, only DµσDµσ and CµBµ are scalars.

— * —
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(b) Show how the tensor Tαβγ transforms under the Lorentz transformation
Λ.

(Partial) Solution/Hint →

Preliminaries.

Let’s first review the transformation of 4-vectors, i.e., of Minkowski
tensors of rank 1. After that we can extend to the case of the rank-3
tensor.

Since the transformation matrix is a *matrix*, it has two indices. These
two indices are always arranged as one superscript and one subscript. The
reason is that the transformation should take a contravariant vector to a
contravariant vector:

B̃α = Λα
µ B

µ ,

or a covariant vector to a covariant vector:

C̃α = Λµ
α Cµ .

In each case, notice that the index summed over appears once as a
superscript and once as a subscript. This is always true in index
summation: the pair of indices which are summed over are one superscript
and one subscript. In the transformations above, the remaining index
than has the same type (contravariant or covariant) as the vector being
transformed.

Note on horizontal placement of indices:
Above, we’ve written the Lorentz transformation matrices as Λµ

α,
without a horizontal shift between the upper and lower index. Often,
it is thought convenient to make clear which is the ‘first’ index and
which is the ‘second’ index, thus Λα

µ B
µ or Λµ

α. If you think of the
transformation as a matrix, then the upper index is the row index and
the lower index is the column index. Thus you might see the form

B̃α = Λα
µ B

µ and C̃α = Λµ
α Cµ = Cµ Λµ

α

The second form for C̃α (with Cµ written before Λ) is nice as it gives
the feeling of Cµ as a row vector: a row vector multiplies a square
matrix from the left, not from the right.
Below we might ignore this additional notational complexity and not
bother with horizontal positioning of the indices. If the upper and
lower indices do not have a horizontal displacement between them,
assume the upstairs index to come first (leftmost) and the downstairs
index to come last (rightmost).
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Now, for a higher-rank tensor, one needs as many factors of the
transformation matrix Λ as the rank. This makes sense because, e.g.,
a rank-2 tensor can be decomposed into two vectors, e.g,, Dµν = BµCν .
Hence the transformation of Dµν goes as follows:

D̃αβ = B̃αC̃β =
(
Λα
µ B

µ
) (

Λβ
ν C

ν
)

= Λα
µ Λβ

ν B
µ Cν

Each vector brings with it one factor of transformation matrix Λ.

We could be careful about horizontal positioning:

D̃αβ = Λα
µ Λβ

ν B
µ Cν

Now the answer.

We have a rank three tensor. Hence

Tαβγ −→ T̃αβγ = Λα
µ Λβ

ν

(
Λ−1

)σ
γ
T µνσ

Note: one needs to pair the indices such that they appear once as subscript
and once as superscript, so that they get summed over through the
Einstein summation convention.

— * —
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(c) A Minkowski tensor Uµν is said to be symmetric if Uµν = Uνµ. If a tensor
is symmetric in one inertial frame, show that it is symmetric in all inertial
frames.

(Partial) Solution/Hint →

In another inertial frame related by the transformation Λ, the tensor will
be

Ũαβ =
(
Λ−1

)µ
α

(
Λ−1

)ν
β
Uµν

The transpose is given by

Ũβα =
(
Λ−1

)µ
β

(
Λ−1

)ν
α
Uµν

=
(
Λ−1

)λ
β

(
Λ−1

)σ
α
Uλσ

{
changing dummy variables

(always allowed)

=
(
Λ−1

)σ
α

(
Λ−1

)λ
β
Uλσ switching order of the two Λ’s

=
(
Λ−1

)σ
α

(
Λ−1

)λ
β
Uσλ using the fact that U is symmetric

The last term is clearly Ũαβ, Thus we have Ũβα = Ũαβ, i.e., the tensor is
symmetric in any inertial frame.

— * —
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6. Poincaré transformations. If Λ is a 4 × 4 matrix representing a Lorentz
transformation, then transformations of the type

x′ = Λ x+ a

are known as Poincaré transformations. Here x and x′ are column vectors
4 × 1 column vectors (4-vectors) representing spacetime coordinates of an
event as seen from different frames, and a is a 4 × 1 column vector. In other
words, a Poincaré transformation is a combination of a Lorentz transformation
plus a possible shift of the space and time coordinates. We will denote this
transformation as (Λ, a).

(a) Show that the result of two Poincaré transformations (Λ1, a1) and (Λ2, a2),
applied successively, is the Poincaré transformation

(Λ2 Λ1,Λ2 a1 + a2)

(Partial) Solution/Hint →

If

x′ = Λ1x+ a1

{
Applying the

transformation (Λ1, a1)

and if

x′′ = Λ2x
′ + a2

{
Applying the transformation (Λ2, a2)

on the result of the first transformation

then we try relating the final four-vector to the original four-vector:

x′′ = Λ2x
′ + a2 = Λ2 (Λ1x+ a1) + a2 = (Λ2Λ1)x+ (Λ2a1 + a2)

Since Λ1 and Λ2 are Lorentz transformations, so is Λ2 Λ1. Thus, x′′ is
obtained from x by applying the Poincaré transformation (Λ2 Λ1,Λ2 a1 +
a2).

— * —
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(b) Are Poincaré transformations commutative?

(Partial) Solution/Hint →

Applying first (Λ1, a1) and then (Λ2, a2) gives us

(Λ2, a2) ? (Λ1, a1) = (Λ2 Λ1,Λ2 a1 + a2)

as we have shown in the previous problem part.

Exchanging the roles of the two transformations gives us

(Λ1, a1) ? (Λ2, a2) = (Λ1 Λ2,Λ1 a2 + a1)

Now Lorentz transformations are not commutative in general, as we have
found in a previous problem set, using boosts in different directions.
Thus Λ2 Λ1 6= Λ1 Λ2 in general, and hence the two resulting Poincaré
transformations obtained above are different.

Thus
(Λ2, a2) ? (Λ1, a1) 6= (Λ1, a1) ? (Λ2, a2)

in general, i.e., Poincaré transformations are not commutative.

— * —
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(c) Are Poincaré transformations associative?

(Partial) Solution/Hint →

The question is whether or not

(Λ3, a3) ?
[
(Λ2, a2) ? (Λ1, a1)

]
is equal to [

(Λ3, a3) ? (Λ2, a2)
]
? (Λ1, a1)

or not. We know how to combine two, so let’s work out the result of
combining three:

(Λ3, a3) ?
[
(Λ2, a2) ? (Λ1, a1)

]
= (Λ3, a3) ? (Λ2 Λ1, Λ2 a1 + a2)

= (Λ3 Λ2 Λ1, Λ3 (Λ2 a1 + a2) + a3)

= (Λ3 Λ2 Λ1, Λ3 Λ2 a1 + Λ3 a2 + a3)

and combining three the other way:[
(Λ3, a3) ? (Λ2, a2)

]
? (Λ1, a1)

= (Λ3 Λ2, Λ3 a2 + a3) ? (Λ1, a1)

= (Λ3 Λ2 Λ1, Λ3 Λ2 a1 + (Λ3 a2 + a3))

Thus, the two combinations of the three transformations give the same
final answer.

— * —

(d) Does the set of all Poincaré transformations form a group?

(Partial) Solution/Hint →

Yes. Closure and associativity have been proven above.

To complete the proof, think separately about whether there is an identity,
and given a Poincaré transformation (Λ1, a1), whether you can construct
its inverse.

— * —


