Due on Monday, May 3rd.

1. Collision/decay problems.
(a) [5 pts] Two photons have the same energy E_{γ}. They collide at an angle θ and create a single particle. Calculate the mass M of the final particle in terms of E_{γ} and θ.
(b) [5 pts] Two balls of equal mass (m each) approach each other with equal but opposite velocities of magnitude v. Their collision is perfectly inelastic, so they stick together and form a single body of mass M. What is the velocity of the final body and what is its mass M ?
Find the mass M in the specific cases of $v=0.01 c, v=0.5 c$, and $v=0.9 c$.
2. The four-vector A^{μ} is found to be timelike in one inertial frame.
(a) $[\mathbf{2} \mathbf{~ p t s}]$ Write an inequality expressing the fact that A^{μ} is timelike.
(b) [3 pts] Explain why A^{μ} has to be timelike in any inertial frame.
3. [SELF] The mass m and the charge q of a particle are four-scalars. Explain why the combination

$$
(m, q, m, q)
$$

is not a four-vector.
4. Electromagnetism.
(a) [5 pts] Show that the tensor equation $\partial_{\mu} J^{\mu}=0$ is equivalent to the continuity equation of electromagnetism. Here J^{μ} is the current density 4 -vector.
(b) [5 pts] The two inhomogeneous Maxwell's equations can be expressed as the tensor equation for the field tensor $F^{\mu \nu}$:

$$
\partial_{\mu} F^{\mu \alpha}=J^{\alpha}
$$

Derive the continuity equation from this equation, using the fact that the field tensor is antisymmetric.

Note: Depending on the definition conventions for $F^{\mu \nu}$ and J^{μ}, Maxwell's inhomogeneous equations may also appear in textbooks in the forms

$$
\partial_{\mu} F^{\mu \alpha}=-J^{\alpha} \quad \text { or } \quad \partial_{\mu} F^{\mu \alpha}=\mu_{0} J^{\alpha} \quad \text { or } \quad \partial_{\mu} F^{\mu \alpha}=-\mu_{0} J^{\alpha}
$$

but this will not matter for the problem above.
5. Minkowski tensors.
(a) $[\mathbf{6} \mathbf{~ p t s}]$ Consider the Minkowski tensors
$D^{\mu \nu}, \quad D^{\mu \nu} B_{\sigma}, \quad D^{\mu \sigma} B_{\sigma}, \quad D^{\mu \sigma} D_{\mu \sigma}, \quad C^{\mu} B_{\mu}, \quad C^{\mu} B_{\sigma}$.
Explain the rank of each tensor.
Which of these, if any, are scalars?
(b) $[\mathbf{3} \mathbf{~ p t s}]$ Show how the tensor $T_{\gamma}^{\alpha \beta}$ transforms under the Lorentz transformation Λ.
(c) [4 pts] A Minkowski tensor $U_{\mu \nu}$ is said to be symmetric if $U_{\mu \nu}=U_{\nu \mu}$. If a tensor is symmetric in one inertial frame, show that it is symmetric in all inertial frames.

6. Poincaré transformations.

If Λ is a 4×4 matrix representing a Lorentz transformation, then transformations of the type

$$
x^{\prime}=\Lambda x+a
$$

are known as Poincaré transformations. Here x and x^{\prime} are 4×1 column vectors (4 -vectors) representing spacetime coordinates of events as seen from two-different frames, and a is a 4×1 column vector. In other words, a Poincaré transformation is a combination of a Lorentz transformation plus a possible shift of the space and time coordinates. We will denote this transformation as (Λ, a).
(a) [5 pts] Show that the result of two Poincaré transformations $\left(\Lambda_{1}, a_{1}\right)$ and $\left(\Lambda_{2}, a_{2}\right)$, applied successively, is the Poincaré transformation

$$
\left(\Lambda_{2} \Lambda_{1}, \quad \Lambda_{2} a_{1}+a_{2}\right)
$$

(b) [3 pts] Are Poincaré transformations commutative?
(c) $[4 \mathrm{pts}]$ Are Poincaré transformations associative?
(d) [SELF] Does the set of all Poincaré transformations form a group?

