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Preface

Le savant doit ordonner; on fait la science avec des faits come une maison
avec des pierres; mais une accumulation de faits n’est pas plus une science qu’un
tas de pierres n’est une maison.

Henri Poincaré 1

This is a set of notes which supplement my lectures on relativity. They are reasonably
self contained but should be read as well as other library material. There are so many books
on relativity in the library that I shall recommend just three all of which are in the library.
These are:

1. Rindler W., Introduction to Special Relativity, Oxford University Press, (1991).

2. Rindler W., Relativity, Special, General and Cosmological, Oxford University Press,
(2001).

3. Einstein A., The meaning of relativity, Methuen, (1956).

The first of these three would be an adequate book for this course but do read as widely
as you can.

Relativity is a beautiful subject which, for mainly pedagogical purposes, is divided into
the following two parts:
(i) Special relativity or the special theory
(ii) General relativity or the general theory

We shall deal almost exclusively with the special theory but I have included some
material on the general theory in chapter 7 where the experimental tests of relativity are
discussed.

The special theory completely revolutionises the physics of mass, space, time, energy
and momentum; it is also the origin of the celebrated equation

E = mc2

relating the energy E of a body to its mass m and c, where c is the velocity of light in a
vacuum. It is this equation which predicts the gigantic release of energy in an atomic fission
or fusion reaction.

The general theory is a very far reaching new theory of gravity which replaces Newton
and Hooke’s inverse square law theory of gravity. As well as being a new theory of gravity—
or gravitation if you prefer a longer word—it includes the special theory as a special case
and points the way forward to a new approach in studying physical problems: this is to
emphasise the coordinate independence of the mathematics used to treat physics problems
and to formulate theoretical physics in a way that makes this manifest.

Charles Nash

1 The scientist must organise; one constructs a science with facts like a house with stones; but an
accumulation of facts is no more a science than a pile of stones is a house.

Henri Poincaré, La Science et l’Hypothèse, p. 168, Flammarion, (1908).



CHAPTER I

How it all began

§ 1. Two special problems of late nineteenth century physics

T
he world of physics faced two very special problems in the last quarter of the nine-
teenth century: one was theoretical and concerned the theory of a radiating black
body, and the other was experimental and concerned certain velocity of light mea-

surements made by Michelson and Morley in 1887. 1

The subsequent solving of these two problems changed the face of physics for the
indefinite future.

Planck, his
constant h,
and quan-
tum theory

The first problem—the black body problem—was solved in 1900 by Max Planck in the
famous paper 2 which introduces the constant h which ever afterwards has been known as
Planck’s constant. This then was the birth of Quantum Theory which did not take its final
form until the 1920’s.

The second problem—the Michelson–Morley velocity of light problem— was solved by
Albert Einstein in 1905 in his famous paper 3 entitled

On the electrodynamics of moving bodies

This is the paper which founded 4 the theory of Special Relativity.
Since quantum theory does not concern us in this set of lectures we now turn our

attention to special relativity.
Einstein’s
1905 papersChapter 8 consists of English translations of Einstein’s two papers of 1905. The reader

should peruse these from time to time: for example after completing each chapter. 5 Note

1 Michelson A. A. and Morley E. W., On the Relative Motion of the Earth and the Luminiferous Ether,

Am. J. Sci., 134, 333–345 (1887)
2 Uber des Gesetz der Energieverteilung im Normalspectrum (On the Law of Energy Distribution in

Normal Spectra), Annalen der Physik, 4, 553, 1901. Note that the publication date of this paper is 1901

but Planck completed the work in 1900.
3 Zur Elektrodynamik bewegter Körper (On the electrodynamics of moving bodies), Annalen der Physik.

322, 891–921, (1905).
4 Actually Einstein published two papers on relativity in 1905: one long one in June founding what we

now call Special Relativity, and a short three page paper in September pointing out that his first paper

implies the famous relationship written nowadays as E = mc2, although Einstein did not write the equation

in quite that way.
5 Be reassured, though, that the reading of Einstein’s papers is not obligatory, the lecture material is

self contained and does not require one to read Einstein’s papers.
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that this incredibly influential paper does not use any sophisticated mathematics to obtain
its revolutionary results; indeed a modest appearance made by calculus using the interpre-
tation of a velocity as a derivative is as sophisticated as it gets. 6

These lectures can be regarded as simply an explanation of this celebrated 1905 pa-
per. The difficulties that a newcomer faces are not really mathematical but physical since
the results overturn all previous intuition about length and time, and physical quantities
constructed from them such as velocity, momentum and energy.

§ 2. The ether

The reader may have noticed the phrase luminiferous ether in the title of Michelson and
Morley’s paper when we quoted the reference, cf. the footnote on p. 1. We now explain
what this phrase means.

Up to the advent of relativity in 1905 most physicists believed that there was a substance
called the ether, aether or luminiferous ether 7 which filled up all space and was the medium
that “vibrated” as light waves passed through it. The speed of travel of these vibrations is
then the speed of light c.

Other waves, such as sound waves and water waves, need a medium for them to be
transmitted—they cannot travel through a vacuum—it was believed that this was also
necessary for the transmission of light. In particular, scientists were reluctant to believe
that light could travel all the way from the Sun to the Earth through a complete vacuum.

To accomplish all that was required of it the ether needed to be a medium of great
elasticity and was supposed to pervade all space and the interiors of solid and liquid bodies.

Let us emphasise then that the ether was meant to carry all light signals whether they
travel in empty space, or in some medium, and the ether was believed to be at absolute
rest.

Accepting the existence of the ether, then one could conceive of measuring the orbital
velocity v of the Earth round the Sun by using light rays entirely within a laboratory. The
main idea is as follows.

Simply apply the usual laws of relative velocities to light rays: If one moves with velocity
v towards a light ray whose velocity is

c (1.1)

then the light ray should appear to be approaching one with velocity

c+ v (1.2)

Similarly if one moved away from the light ray with velocity v, the ray should appear to
approach with velocity

c− v (1.3)

6 Calculus is used a little more in the paper’s discussion of Maxwell’s equations mainly because these

latter are differential equations; however by then the remarkable results about mass, length and time have

all been derived.
7 The word luminiferous is used because it means light carrying from the Latin lumen: light or lamp,

and ferre: to carry; the point being that the ether was supposed to be a medium for light transmission.
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Hence appropriate measurements of two such rays, as we explain in the next section, should
allow one to deduce v the velocity of the Earth. This velocity v of the Earth was also
referred to as the velocity of the Earth through the ether.

A famous experiment—the one we mentioned at the beginning of the section—to make
precisely such a measurement was done in 1887 by Michelson and Morley. This experiment,
and its failure to measure v, led to the founding of relativity.

The failure of this experiment, and particularly his disquiet about asymmetries of
Maxwell’s equations found when comparing electric and magnetic phenomena, led Einstein
to realise that the ether could be dispensed with altogether; though not all the scientific
community accepted this when his 1905 paper was published.

For example a common way to try and avoid discarding the ether was to consider that
the Earth dragged the ether along with it as it travelled through space. Though this would
have explained Michelson and Morley’s result, there were other difficulties with the notion
of ether drag and so the ether was eventually abandoned after 1905. Nowadays the ether is
not believed in and has become a thing of the past.

The demise
of the etherIt is now time to describe the work of Michelson and Morley.

§ 3. The problem unearthed by Michelson and Morley

With the hindsight offered by history one can pinpoint a single experimental result as being
crucial in drawing physics along the path to relativity. This is the famous light interference
experiment of Michelson and Morley carried out in 1887 which we now describe.

The exper-
iment of
Michelson
and Morley

Michelson and Morley, in their experiment, used an experimental apparatus located on
the Earth’s surface and so it was the velocity of the Earth round the Sun that became the
velocity v referred to in the previous paragraph.

The experiment carried out by Michelson and Morley in 1887 is illustrated below in
figure 1. Here is a brief description of the experimental equipment. What we see is a light
ray from a source falling on a half silvered mirror set at 450; this ray is thereby split into
two and falls on the two mirrors labelled I and II, these mirrors in their turn reflect their
rays back to the half silvered mirror allowing them to enter the measuring apparatus which
is known as a Michelson interferometer.

Michelson 

Interferometer

II

L

L

Direction of Earth’s motion

I

AB

Light 

Source

Fig. 1: The Michelson–Morley apparatus
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B

A C

Earth moving with speed v

L

Fig. 2: The Michelson–Morley apparatus in motion

The next figure (figure 2) shows how the mirrors move as the Earth orbits the Sun; the
path ABC of one of the light rays is also shown.

Now we can analyse the experiment as follows: Figure 2 shows the half silvered mirror
moving from A to C; let this take a time

t (1.4)

Since its velocity is v then this mirror travels a distance

vt (1.5)

so the distance AC is precisely vt as is shown in figure 3. It is now clear that triangle ABC
has the lengths as shown in figure 3.

A

B

C
vt

L 
ct/2

ct/2

2 2 2
L  + (vt/2) = (ct/2)

Fig. 3: The light path ABC
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Let us now compare the times taken by the two light rays to reach the measuring
apparatus i.e. the Michelson interferometer. One ray follows the path ABC, and takes a
time

t (1.6)

However, from figure 3, we see that

L2 +

(

vt

2

)2

=

(

ct

2

)2

⇒ 1

4

(

c2t2 − v2t2
)

= L2

⇒ t2 =
4L2

c2 − v2

(1.7)

So that

t =
2L√
c2 − v2

(1.8)

The second light ray is the one that travels horizontally a distance L with velocity relative
to its target c− v and then a distance L back again with velocity relative to its target c+ v
so it should take a total time t′ where

t′ =
L

c− v
+

L

c+ v

=
2Lc

(c− v)(c+ v)

(1.9)

So that

t′ =
2Lc

c2 − v2
(1.10)

Summarising we find that the times t and t′ for the two light rays to get back to the
Michelson interferometer are

t =
2L√
c2 − v2

t′ =
2Lc

c2 − v2

(1.11)

and we observe that these are unequal i.e.

t 6= t′ (1.12)

The problem is that the experiment showed that the times were exactly the same:
had there been any time difference the two rays would have been out of phase when they
reached the Michelson interferometer. This phase difference was to be detected by rotating
the apparatus through 900 and repeating the experiment; such a rotation interchanges the
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two arms of the interferometer and should cause a shift in the interference pattern; however
no such shift in the interference pattern was detected. 8

§ 4. The significance of the negative result of Michelson and Morley

Michelson and Morley’s findings were inexplicable by physics as understood at that time—
i.e. 1887. However some partial explanations of the result were offered: the most important
one being due to Fitzgerald, in 1889; the same explanation was offered by Lorentz indepen-
dently, in 1892. 9

The explanation of Fitzgerald and Lorentz was that somehow or other the interferom-
eter contracted along the direction of its motion—the horizontal direction—and that this
contraction changed its length, in the horizontal direction, by a factor

√

1 − v2

c2
(1.13)

This meant that the length of the horizontal arm changed from

L (1.14)

to
The
Fitzgerald-
Lorentz con-
tractionL

√

1 − v2

c2
(1.15)

This contraction is often referred to as the Fitzgerald-Lorentz contraction—it is a contraction
because v < c and so

√

1 − v2/c2 < 1. We shall see, in chapter 4, that length contraction

8 One might reasonably wonder if the experimental apparatus was sensitive enough to detect the expected
result; it certainly was and here are the details: The velocity v in 1.11 is the orbital velocity of the Earth
round the Sun; this orbit, though elliptical, can be approximated by a circle of radius 93 million miles which
is traversed in 365.25 days. This gives

v =
2π · 93, 000, 000

365.25 · 24 · 60 · 60
= 18.51, miles per second ≡ 29.78 km/sec

This should have given a shift in the interference pattern of 0.4 fringes which would have been easily

measurable. In fact the 1887 experiment (cf. Michelson A. A. and Morley E. W., On the Relative Motion of

the Earth and the Luminiferous Ether, Am. J. Sci., 134, 333–345 (1887)) found the shift to be at least 80

times smaller—i.e. less than 0.005 fringes—consistent with zero shift. Subsequent experiments have refined

this result enormously and always found the shift to be consistent with zero. Michelson received the 1907

Nobel prize for physics for his work.
9 Fitzgerald was Irish and Lorentz was Dutch. Fitzgerald limited himself to the observation that had

the horizontal arm of the interferometer somehow contracted by the amount
√

1 − v2/c2, then Michelson

and Morley’s result would have found no fringe shift, as was the case. Lorentz, as well as independently

making the same point, went on, in later years, to pursue some of the mathematical consequences of such

a contraction, particularly those for electromagnetism. In doing this he derived for the first time, in 1905,

the transformations now known as the Lorentz transformations; these latter emerge naturally in Einstein’s

theory.



How it all began 7

is predicted by special relativity, but, by itself, this is not quite the full explanation of the
Michelson-Morley result; one also needs what is called time dilation, cf. chapter 4.

To see that this contraction would explain Michelson and Morley’s result is easy: this
is simply because the time t′ has now changed whereas t has not; t and t′ now have the
values

t =
2L√
c2 − v2

t′ =
2
√

1 − v2

c2Lc

c2 − v2

(1.16)

But we now easily calculate that

2
√

1 − v2

c2Lc

c2 − v2
=

2
√

1 − v2

c2Lc

c2(1 − v2

c2 )

=
2L

c
√

1 − v2

c2

=
2L√
c2 − v2

(1.17)

Hence we do have
t = t′ (1.18)

as claimed.
The contraction explanation is ad hoc and left the laws of physics in an awkward state:

there had to be a deeper reason for the behaviour of the light rays in the Michelson Morley
experiment. This was supplied by Einstein’s work to which we turn in the next section.

§ 5. Einstein enters: his Relativity Principle

Einstein simply decided to interpret the negative result of the Michelson Morley experiment
as meaning that if one travels towards or away from a light ray that it always has the same
velocity c.

This bold hypothesis is counterintuitive but experiment shows that—counterintuitive
or not—it is indeed correct.

Einstein combined this hypothesis with what he called The Relativity Principle and
thereby derived many striking consequences 10 which revolutionised 11 physics for ever af-
terwards.

10 We shall see in chapter 4 that these consequences include the contracting of lengths and the slowing

down of times as an object moves, as well as the emergence of the famous equation E = mc2 relating mass

and energy. This equation of course providing the prediction that enormous amounts of energy can be

released in nuclear fission and fusion.
11 Einstein did not receive a Nobel prize for his work on relativity due, perhaps, to caution on the part

of the Nobel committee. However he did receive the 1921 Nobel prize for physics for his use of quantum

theory to explain the photoelectric effect.
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Before giving Einstein’s relativity principle we first introduce and explain the term
frame of reference which is used frequently in relativity. A frame of reference (not a precise
term) can be thought of as three rigid rods representing the x, y and z axes, together with a
clock which provides a time t. Then an inertial frame is a frame of reference that is moving
at constant velocity.

An inertial
frameMore precisely what Einstein did what was to introduce two postulates; and these are:

Einstein’s two postulates (preliminary form)

(i) The Relativity Principle The laws of electrodynamics and optics are the same in all
frames of reference for which the laws of mechanics hold good

(ii) Constancy of the velocity of light The velocity c of light is a constant independent
of the state of motion of the emitting body.

Now the Relativity Principle requires some elucidation: we need to define what is meant
by the phrase “frames of reference for which the laws of mechanics hold good”.

What Einstein means by this is that if one takes two laboratories and allows one to
move at a constant velocity relative to the other, then the laws of mechanics, established by
doing whatever experiments one wishes, will be found to be the same in both laboratories.
One need not restrict oneself to the laws of electrodynamics and optics either. In other
words the laws of physics are the same in all inertial frames.

It is very convenient to use what we have just said to shorten Einstein’s relativity
principle. So here are the two postulates again where the relativity principle has been
shortened but the second postulate is unchanged.

Einstein’s two postulates (final form)

(i) The Relativity Principle The laws of physics are the same in all inertial frames.
Einstein’s
two postu-
lates

(ii) Constancy of the velocity of light The velocity c of light is a constant independent
of the state of motion of the emitting body.

The second of Einstein’s postulates was very hard to accept at first but it did explain
the result of the Michelson Morley experiment, though not, one should note, in precisely
the same way as envisaged by Fitzgerald and Lorentz. We shall see in chapter 3 that the
constancy of the velocity of light is absolutely vital to make special relativity work.

Let us turn next to the matter of the coordinates that we use to discuss physics.

§ 6. Physics and coordinates

Einstein’s relativity principle should be seen as an important first step in trying to
separate physical phenomena from the coordinates which are used to discuss them.

This separation is taken a step further in General Relativity which is the theory Einstein
formulated in 1915 to replace Newtonian gravity.

Geometry is also placed in the foreground in relativity, both special and general, and
this is something that fits in well with the desire to separate coordinates from the phenomena
that they are describing: one knows that geometrical objects exist and are definable quite
separately from any coordinates used to analyse them.
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This point about the separation of coordinates from the phenomena that they describe
may seem simple and unlikely to lead to much extra knowledge; however this is quite wrong:
Physics since 1905, and mathematics since that time, both emphasise the importance of
formulations which are as coordinate free as possible.

The geometry that we need for special relativity is the four dimensional geometry of
Minkowski which we shall study in chapter 3; however before that we turn to some results
in two dimensional geometry; they form the material of the next chapter.



CHAPTER II

Some two dimensional geometry

§ 1. Rotations: some two dimensional geometry revisited

W
e shall need some simple results from two dimensional geometry later so we
go through them now; the first part will be just revision of familiar material.
Consider two sets of orthogonal axes inclined at an angle θ to each other as

shown in 4 (a). Each set of axes possesses a pair of orthonormal vectors which we have
denoted by

{i, j} and {e1, e2} (2.1)

Fig 4 (b) shows a vector v whose components we display relative to each set of axes in Figs.
5 (a) and (b).

θ
i

j   

e

e

1

2

θ
i

j   

e

e

1

2

v

(a)     (b)

Fig. 4: (a) Two sets of axes (b) The axes with a vector v added

i

j   

v

x

y

(a)

y

x

e

e

2

1

v

(b)

Fig. 5: The same vector v and its components relative to two sets of axes
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Consulting figure 5 yields two expressions for v namely

v = x i + y j

v = x′e1 + y′e2

(2.2)

We want to express x′ and y′ in terms of x and y: taking the dot product with e1 gives

x′e1 + y′e2 = x i + y j

⇒ (x′e1 + y′e2) · e1 = (x i + y j) · e1

⇒ x′ = x i · e1 + y j · e1

⇒ x′ = cos(θ)x+ sin(θ)y

(2.3)

Similarly, taking the dot product with e2 gives

(x′e1 + y′e2) · e2 = (x i + y j) · e2

⇒ y′ = x i · e2 + y j · e2

⇒ y′ = cos(θ + π/2)x+ cos(θ)y

= − sin(θ)x+ cos(θ)y

(2.4)

Summarising, we have found that (x, y) and (x′, y′) are related by the equations

x′ = cos(θ)x+ sin(θ)y

y′ = − sin(θ)x+ cos(θ)y
(2.5)

which we often write in matrix form as

[

x′

y′

]

=

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

] [

x
y

]

(2.6)

Lengths are also preserved by rotations; we just remind the reader that the length of the
vector v which we denote by

|v| (2.7)

can be computed in terms of (x, y) or (x′, y′). So we have two expressions for |v|, and these
are

|v| =
√

x2 + y2

|v| =
√

(x′)2 + (y′)2
(2.8)

This is trivial to check as we might at well do it: Using 2.5 we can calculate that

(x′)2 + (y′)2 = {cos(θ)x+ sin(θ)y}2
+ {− sin(θ)x+ cos(θ)y}2

=
{

cos2(θ) + sin2(θ)
}

x2 +
{

cos2(θ) + sin2(θ)
}

y2

= x2 + y2

(2.9)
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Rotations
preserve
the length
√

x2 + y2

So we do indeed have
(x′)2 + (y′)2 = x2 + y2 (2.10)

§ 2. Trigonometric and hyperbolic functions

We shall also need to make use of some of the standard properties of trigonometric and
hyperbolic functions and so we shall go through these now.

Recall that sin and cos can be expressed in terms of exponentials as

sin(θ) =
eiθ − e−iθ

2i
, cos(θ) =

eiθ + e−iθ

2
(2.11)

In contrast, the definitions of the hyperbolic functions cosh and sinh contain no factors of
i, and are given by the equations

sinh(θ) =
eθ − e−θ

2
, cosh(θ) =

eθ + e−θ

2
(2.12)

One also has the usual definition

tanh(θ) =
sinh(θ)

cosh(θ)
(2.13)

From these facts follow some useful relations between the trigonometric and hyperbolic
functions which the reader can easily verify, namely

cos(iθ) = cosh(θ), sin(iθ) = i sinh(θ), tan(iθ) = i tanh(θ) (2.14)

Also certain well known identities for trigonometric functions have similar, but not
identical, counterparts expressed in terms of hyperbolic functions. We list what we have in
mind below: For trigonometric functions we have

cos2(θ) + sin2(θ) = 1, tan(θ + φ) =
tan(θ) + tan(φ)

1 − tan(θ) tan(φ)
(2.15)

While the counterparts for hyperbolic functions are

cosh2(θ) − sinh2(θ) = 1, tanh(θ + φ) =
tanh(θ) + tanh(φ)

1 + tanh(θ) tanh(φ)
(2.16)

where one should note the vital changes of sign.

§ 3. Transformations preserving the quantity x2 − y2

Of great importance for special relativity is the quantity

x2 − y2 (2.17)
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rather than
x2 + y2 (2.18)

Also any transformations which preserve x2 − y2 play a central rôle in special relativity. It
turns out that if we rotate through an imaginary angle, that is through the angle

iθ, (i2 = −1 as usual) (2.19)

then we get such a transformation. Let us spell out the details since the result is so impor-
tant:

First note that if we substitute iθ for θ in 2.6 we get
[

x′

y′

]

=

[

cos(iθ) sin(iθ)
− sin(iθ) cos(iθ)

] [

x
y

]

(2.20)

But if we use the relations between sin, cos, sinh, cosh of 2.14 this becomes
[

x′

y′

]

=

[

cosh(θ) i sinh(θ)
−i sinh(θ) cosh(θ)

] [

x
y

]

(2.21)

which is the pair of equations

x′ = cosh(θ)x+ i sinh(θ)y

y′ = −i sinh(θ)x+ cosh(θ)y
(2.22)

Now if we adjust the notation slightly by defining (u, v) and (u′, v′) according to the equa-
tions

u = x, v = iy

u′ = x′, v′ = iy′

then we obtain
u′ = cosh(θ)u+ sinh(θ)v

v′ = sinh(θ)u+ cosh(θ)v
(2.23)

which we can also write in matrix form as
[

u′

v′

]

=

[

cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

] [

u
v

]

(2.24)

Finally, as we now show by a direct check, the quadratic form u2 − v2 is preserved by such
a change of variable; i.e.

(u′)2 − (v′)2 = u2 − v2 (2.25)

Carrying out the check (remember from 2.16 that cosh2(θ)− sinh2(θ) = 1) we compute that

(u′)2 − (v′)2 = {cosh(θ)u+ sinh(θ)v}2 − {sinh(θ)u+ cosh(θ)v}2

=
{

cosh2(θ) − sinh2(θ)
}

u2 −
{

cosh2(θ) − sinh2(θ)
}

v2

= u2 − v2

(2.26)

Hence we have indeed successfully checked that
u2 − v2 is
preserved by
“hyperbolic
rotations”.

(u′)2 − (v′)2 = u2 − v2 (2.27)



CHAPTER III

Minkowski space and Lorentz transformations

Die Anschauungen über Raum und Zeit, die ich Ihnen entwicklen möchte,
sind auf experimentell-physikalischem Boden erwachsen. Darin liegt ihre
Stärke. Ihre Tendenz ist eine radikale. Von Stund an sollen Raum für sich
und Zeit für sich völlig zu Schatten herabsinken, und nur noch eine Art Union
der beiden soll Selbständigkeit bewahren.

Hermann Minkowski 1

§ 1. Minkowski space

M
inkowski was responsible, in 1908, for a fundamental step in physics: he introduced
the spacetime approach to relativity: he suggested using time

t (3.1)

as a fourth dimension together with the three spatial variables

x, y, z (3.2)

The point being that relativity became much simpler to understand if one used this four
dimensional setting. So one no longer considers time and space separately but combines
them into a single four dimensional geometry.

This four dimensional space is then called spacetime or Minkowski space and we shall
denote it by

Minkowski
space

Mk (3.3)

Any point in Minkowski space Mk has four coordinates, namely

x, y, z, t (3.4)

1 The views of space and time which I wish to develop have sprung from the soil of experimental physics.
Therein lies their strength. They have a radical tendency. Henceforth space by itself, and time by itself, will
fade away into mere shadows, and only a kind of union of the two will preserve an independent existence.

Hermann Minkowski, Conference talk in Cologne, 21 September 1908, published in Raum und Zeit,

Physikalische Zeitschrift, 104, (1909).
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and a point in Minkowski space represents an event—an alternative description of Minkowski
space is that it is the set of all possible events.

Minkowski
space as the
set of all
eventsSpecial relativity changes radically our understanding of space and time, and the jus-

tification of this four dimensional approach is that it makes this understanding natural,
elegant and much easier to acquire.

We now turn from mathematics to physics and consider Einstein’s two postulates ap-
plied to light rays.

§ 2. Light rays and frames of reference

Let us use coordinates
(x, y, z, t) (3.5)

which belong to a frame
F (3.6)

with origin O.
Consider a light ray moving in a straight line along, or parallel to, the x-axis; the ray

obeys one of the two equations

x = ct (the ray is moving from left to right)
x = −ct (the ray is moving from right to left)

(3.7)

Let us now consider that both the left-moving and the right-moving rays are simultaneously
present then we have

x = ∓ct
⇒ x2 = c2t2

(3.8)

which we find convenient to write as

x2 − c2t2 = 0 (3.9)

Having understood this now we consider a spherical light ray starting out from the origin

(x, y, z) = (0, 0, 0) (3.10)

and spreading out in a spherical manner as t increases. Since light travels a distance ct, in
time t, then the radius of this sphere, at time t, will be

ct (3.11)

Hence the spherical wave front has the equation

x2 + y2 + z2 = c2t2 (3.12)

that is
x2 + y2 + z2 − c2t2 = 0 (3.13)

and we recognise 3.13 as a three dimensional version of 3.9.
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A pair of
inertial
frames

x

y

z

v

x

y

z

OO

Fig. 6: The two frames F and F ′

Now consider what this equation

x2 + y2 + z2 − c2t2 = 0 (3.14)

looks like in another frame F ′ which moves with constant velocity v relative to the frame
F . The two frames are depicted in figure 6 with coordinates in F ′ being denoted by

(x′, y′, z′, t′) (3.15)

For later convenience we also arrange that the two spatial origins O and O′ coincide
when t = t′ = 0.

Now Einstein’s second postulate asserts that the velocity of light, seen in F ′, will be
identical to that of F—so the velocity of light in F ′ will still be

c (3.16)

But this means that the equation of the spherical wave in the frame F ′ must precisely
replicate that of the frame F . Therefore, in F ′, the light wave simply has the equation

Einstein’s
second pos-
tulate ap-
plied to F ′

(x′)2 + (y′)2 + (z′)2 − c2(t′)2 = 0 (3.17)

This being so, we can immediately observe that

x2 + y2 + z2 − c2t2 = (x′)2 + (y′)2 + (z′)2 − c2(t′)2 (3.18)

This tells us that the mathematical task we have to accomplish is to find all transformations
Λ of Minkowski space

Λ :Mk −→ Mk

(x, y,z, t) 7−→ (x′, y′, z′, t′)
(3.19)

which have the property that 2

x2 + y2 + z2 − c2t2 = (x′)2 + (y′)2 + (z′)2 − c2(t′)2 (3.21)

2 Actually the careful reader may have noticed that we could replace the property 3.21 of Λ by the more
general condition

x2 + y2 + z2 − c2t2 = λ
[

(x′)2 + (y′)2 + (z′)2 − c2(t′)2
]

(3.20)

where λ is some constant. But, if we did so, we would find that it would emerge in the end that λ = 1.

The argument to establish this first uses the fact that 3.20 also has to hold for the inverse Lorentz

transformation Λ−1 so that λ = λ−1, thus λ = ±1; finally the the choice λ = −1 is impossible because it

would force x′, y′, z′, t′ to become imaginary. Hence we suffer no loss of generality by not including λ.
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These transformations Λ are called Lorentz transformations and we derive their form
in the next section.

§ 3. The Lorentz transformation Λ derived

We shall now assume that Lorentz transformations are linear. This is only done to make
the argument less cluttered with detail—it is not difficult to prove—the reader who wishes
to see a proof will find one in § 7.

Now let us temporarily pretend that spacetime is two dimensional with coordinates
(x, t) instead of (x, y, z, t) so that Λ sends

Temporarily
work with
a two di-
mensional
spacetime

(x, t) 7→ (x′, t′) (3.22)

and just has to satisfy

x2 − c2t2 = (x′)2 − c2(t′)2 (3.23)

This is familiar territory and was discussed in section 1 of this chapter. More precisely such
transformations Λ are discussed in 2.23–2.25. Hence this means that x′ and t′ are given by
the equations

x′ = cosh(θ)x+ sinh(θ)ct

ct′ = sinh(θ)x+ cosh(θ)ct
(3.24)

or, in matrix form, we can write

[

x′

ct′

]

=

[

cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

] [

x
ct

]

(3.25)

All we have left to do is find out what the angle θ can be.
To do this we just look at figure 6 and consider the point from the point of view of

both frames F and F ′: Viewed from F ′ the point O′ is just the origin and is specified by
the equation

x′ = 0 (3.26)

But viewed from F the point O′ is moving with constant speed v and so is specified by the
equation

x = vt (3.27)

Now if we substitute 3.26 and 3.27 into the first equation of 3.24 we obtain

0 = cosh(θ)vt+ sinh(θ)ct

⇒ tanh(θ) = −v
c

(3.28)

so θ is now known. 3 We proceed at once to fill in the remaining details of the Lorentz

3 Some authors write tanh(β) = +v/c (so that β = −θ); the variable β is then called the rapidity; we

shall return to this matter in Chapter 5, cf. p. 42
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transformation Λ. Since

tanh(θ) = −v
c

⇒ sinh(θ)

cosh(θ)
= −v

c

⇒

√

cosh2(θ) − 1

cosh(θ)
= −v

c
, (remember cosh2(θ) − sinh2(θ) = 1)

⇒ cosh2(θ) − 1

cosh2(θ)
=
v2

c2

(3.29)

So we immediately deduce that 4

cosh(θ) =
1

√

1 − v2

c2

, sinh(θ) = −v
c

1
√

1 − v2

c2

, (3.30)

Using these values in 3.24 above we find that

x′ =
1

√

1 − v2

c2

(x− vt)

t′ =
1

√

1 − v2

c2

(

− v

c2
x+ t

)

(3.31)

Note that it is standard notational practice to abbreviate things by defining the quantity
γ(v) where

γ(v) =
1

√

1 − v2

c2

(3.32)

and 5, when the context allows, γ(v) is often abbreviated to just γ.
In any case, with this notation, our Lorentz 6 transformation Λ is given by the more

compact pair of equations 7

4 Notice that, in 3.30, the positive sign on the RHS of the equation for cosh(θ) is needed because the

function cosh(θ) is always positive; on the other hand a minus sign is needed on the RHS of the equation

for sinh(θ) because of the minus sign in the equation 3.29 for tanh(θ).
5 It is amusing to note that what we call γ here Einstein called β; cf. p. 96 of these notes where you

will find the relevant equation of Einstein’s first 1905 paper.
6 Lorentz and Zeeman received the 1902 Nobel prize for physics for their work on the effect of magnetic

fields on electromagnetic radiation. Zeeman was Lorentz’s student, obtaining his doctorate in 1893, and

and doing his fundamental experiment on the magnetic splitting of spectral lines in 1897. Zeeman was the

experimentalist who complemented the theorist Lorentz; somewhat unfairly, perhaps, this phenomenon is

now usually called the Zeeman effect.
7 The Lorentz transformation Λ of 3.33 is sometimes called a boost because its application to coordinates

(x, y, z, t) produces coordinates (x′, y′, z′, t′) which move with velocity v relative to (x, y, z, t).
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The Lorentz
transforma-
tion Λx′ = γ(v) (x− vt)

t′ = γ(v)
(

− v

c2
x+ t

) (3.33)

Observe that
1

√

1 − v2

c2

= ∞ (3.34)

when v = c; this means that something goes wrong if something, other than light itself,
travels at the speed of light. We shall see in chapter 5 that no particle of positive mass m
can attain the speed of light, it would require infinite energy to do so. Thus the speed of
light is an upper limit on the velocity for ordinary objects of mass m.

There is also an inverse Lorentz transformation Λ−1 of the form

Λ−1 :Mk −→ Mk

(x′, y′,z′, t′) 7−→ (x, y, z, t)
(3.35)

Specialising to 2 dimensions, so that y and z drop out, we can easily calculate Λ−1: Since,
from the point of view of F ′, F is moving with velocity

−v (3.36)

along the x-axis; Λ−1 can be got by simply changing the sign of v in the formula 3.33 for Λ.
If we carry out this sign change we get

The inverse
Lorentz
transfor-
mation Λ−1

x = γ (x′ + vt′)

t = γ
( v

c2
x′ + t′

) (3.37)

§ 4. Minkowski space again

Back to four
dimensional
spacetime

Now let us drop our restriction to two dimensional spacetime and reinstate the missing
variables y and z.

In the next section we shall introduce some important notation due to Einstein. This
notation both shortens calculations and makes them clearer. In order to unify space and
time into a four dimensional setting we shall denote

x, y, z, t (3.38)

by
x0, x1, x2, x3 (3.39)

where
x0 = ct, x1 = x, x2 = y, x3 = z (3.40)

Note carefully that x0 6= t but rather we have

x0 = ct (3.41)
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this inclusion of the factor c is natural given the occurrence of ct in the equation for a light
ray and the importance of light propagation in relativity.

When we want to refer to all four of these coordinates we shall always use a Greek
letter and write

xµ (3.42)

So µ runs through the four values 0, . . . , 3 so the possible values 8 of the Greek index µ are

µ = 0, 1, 2, 3 (3.43)

When we only want to refer to the three spatial coordinates x, y, z we shall use a Latin letter
and write

xi (3.44)

So i runs through the three values 1, 2, 3 and the possible values of the Latin index i are

i = 1, 2, 3 (3.45)

The Lorentz transformation Λ should also be expressible as a 4×4 matrix when we use
all 4 variables x0, x1, x2, x3. One should realise that we want to have







ct′

x′

y′

z′






= Λ







ct
x
y
z






, with Λ =

[

Λα
β

]

4×4
a 4 × 4 matrix (3.46)

All we have to do is to take the 2 × 2 matrix form of Λ given in 3.25, taking note that we
have now written ct as the first variable instead of x, and add a 2× 2 identity matrix at the
bottom so as to leave y and z unchanged; then we fill in the remainder of the matrix with
zeroes.

Hence we have (remembering that ct is now the first variable instead of x)
The Lorentz
transforma-
tion as a
4 × 4 matrix

Λ =







sinh(θ) cosh(θ) 0 0
cosh(θ) sinh(θ) 0 0

0 0 1 0
0 0 0 1






(3.47)

and, if we use the values of cosh(θ) and sinh(θ) provided in 3.30, we can further write

Λ =







−γ vc γ 0 0
γ −γ vc 0 0
0 0 1 0
0 0 0 1






, γ =

1
√

1 − v2

c2

(3.48)

8 The reader will find that some textbooks use the slightly different notation x1 = x, x2 = y, x3 =

z, x4 = ct so that Greek indices still take four values but these values are 1, 2, 3, 4 instead of 0, 1, 2, 3. Yet

another convention is to interchange the rôles of the Greek and Latin indices, that is to cause Greek indices

to take three values and Latin indices to take four values. Clearly all notations will do the same job.
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and if we want to read off the various values of the matrix entries Λα
β for the Lorentz

transformation we can use the equation







Λ0
0 Λ0

1 Λ0
2 Λ0

3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3






=







−γ vc γ 0 0
γ −γ vc 0 0
0 0 1 0
0 0 0 1






(3.49)

Finally if we want the corresponding formulae for the inverse Lorentz transformation
Λ−1 we just have to change the sign of v in the above expressions; by the way the reader
can check that this is the same as changing the sign of θ. In any case—for the record—the
result of doing this is that

Λ−1 =







− sinh(θ) cosh(θ) 0 0
cosh(θ) − sinh(θ) 0 0

0 0 1 0
0 0 0 1






(3.50)

and
Matrix
form of
the inverse
Lorentz
transfor-
mation

Λ−1 =







γ vc γ 0 0
γ γ vc 0 0
0 0 1 0
0 0 0 1






, γ =

1
√

1 − v2

c2

(3.51)

Incidentally this matrix form makes it very quick to check that Λ−1 is an inverse, i.e.
that

ΛΛ−1 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






= Λ−1Λ (3.52)

§ 5. Length in Minkowski space

The quantity x2 + y2 + z2 − c2t2 which arises naturally when discussing light rays has a
geometric interpretation in terms of a “length” in Minkowski space.

Recall first that in ordinary Euclidean 3 space a length L is given by the equation

L2 = x2 + y2 + z2 (3.53)

or if were to have an n-dimensional Euclidean space, with coordinates x1, x2, . . . xn, then L
would be determined by the similar equation

L2 = (x1)2 + (x2)2 + · · · + (xn)2 (3.54)

Well, in Minkowski space Mk, we want to interpret the quantity LMk defined by

LMk =
√

c2t2 − x2 − y2 − z2 (3.55)
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or more conveniently in squared form

L2
Mk

= c2t2 − x2 − y2 − z2 (3.56)

as a “length” 9.
We can write the formula for the Minkowski length LMk by using a matrix known as

the metric tensor gµν or simply the metric. The metric tensor gµν is a rather simple 4 × 4
matrix whose definition is

gµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






(3.57)

The met-
ric gµν is
introduced

Now gµν is an important, but simple, object in special relativity. The word tensor should
not intimidate the reader, we shall not need to explain it here: the tensorial properties of
gµν are only needed in general relativity where gµν is a more complicated object. Hence
the reader need not worry that any mathematics, beyond that of matrices, is required to
understand gµν : in special relativity we can just regard it as a matrix.

The metric gµν has an inverse which is denoted by using upper indices and is written
as

gµν (3.58)

Actually gµν is such a simple matrix that it is its own inverse: so for gµν we also have

gµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1






(3.59)

gµν is the
inverse of
gµν

Despite this fact it is still important to use gµν in some formulae rather than gµν . This
is because gµν and gµν are used for the task of raising and lowering indices, a task which we
explain below, cf. 3.72 and what follows. Also all spacetimes possess metrics gµν and, for
spacetimes other than Minkowski’s, such as those of General Relativity, gµν is not usually
its own inverse.

Now we use the metric gµν to obtain our promised new formula for the Minkowski
length LMk. Consider the expression

[

ct x y z
]







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1













ct
x
y
z






(3.60)

9 Care is needed here since the minus signs in the definition 3.55 of LMk means that L2
Mk

can be negative

as well as positive—a negative value of L2
Mk

means that LMk is pure imaginary and this is impossible for

a normal Euclidean length. Indeed, as we shall see below, negative values of L2
Mk

do occur all the time and

have an important physical meaning. It turns out that one is safe enough in thinking of LMk as a “length”

as long as one does not try and apply results like Pythagoras’ theorem to it; these latter are only true for

the normal Euclidean length L of 3.54
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We readily compute that







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1













ct
y
y
z






=







ct
−x
−y
−z






(3.61)

So
[ct x y z]







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1













ct
x
y
z






=

[ct x y z]






ct
−x
−y
−z






(3.62)

and finally we have

[ct x y z]






ct
−x
−y
−z






= c2t2 − x2 − y2 − z2 (3.63)

So we have found that
[

ct x y z
]







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1













ct
x
y
z






= L2

Mk
(3.64)

This expression for L2
Mk

is crying out for some more compact notation and this is easy to
supply. Since [xµ] ≡ [ ct x y z ] we see that

3
∑

µ=0

gµνx
µ = [ ct −x −y −z ] (3.65)

and multiplying by a further factor xν and summing over ν we find that

3
∑

ν=0

3
∑

µ=0

gµνx
µxν = c2t2 − x2 − y2 − z2 (3.66)

i.e. we have the more compact formula

L2
Mk

=
3

∑

ν=0

3
∑

µ=0

gµνx
µxν (3.67)

It turns out that the summation signs in this formula can actually be dispensed with making
it even more compact. This is made possible by using what is called the Einstein summation
convention and we explain this in the next section.
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§ 6. The Einstein summation convention

Einstein introduced a very useful notational rule for avoiding the need to write the summa-
tion sign

Σ (3.68)

This is called the Einstein summation convention and says that any index which is repeated
is summed over. We now illustrate it by some examples.

If we take our expression 3.67 for the Minkowski length which was

L2
Mk

=
3

∑

ν=0

3
∑

µ=0

gµνx
µxν (3.69)

we notice that both µ and ν are repeated so, using the summation convention we have the
really compact formula

L2
Mk

= gµνx
µxν (3.70)

gµν and
gµν are
used when
raising and
lowering
indices

The metric gµν , and its inverse gµν , have a second important use which is to raise and
lower indices on linear algebraic objects.

Example Index Raising

For example an object with an lower index such as

Aα (3.71)

can have it raised by multiplication with gαβ and summation over β: more precisely we
define Aα—that is A with the upper index—by writing

An index
raised

Aα = gαβAβ (3.72)

Suppose then that we take a specific example

(A0, A1, A2, A3) = (a, b, c, d) (3.73)

then, on raising the index, we straightaway compute that
Index rais-
ing changes
three signs(A0, A1, A2, A3) = (a,−b,−c− d) (3.74)

and one sees that the index raising operation leaves the A0 component unchanged but
changes the sign of A1, A2 and A3.

Example Index lowering

Conversely the lowering of an index is done with the metric gµν , if we begin with

Bν (3.75)

then Bµ is defined by the equation
An index
lowered



Minkowski space and Lorentz transformations 25

Bµ = gµνB
ν (3.76)

Again it is clear that index lowering changes some signs; in fact it changes exactly the same
signs as the index is done by the index raising operation. If we start with

(x0, x1, x2, x3) = (e, f, g, h) (3.77)

then, on applying the definition 3.76, we find that
Index low-
ering also
changes
three signs

(x0, x1, x2, x3) = (e,−f,−g,−h) (3.78)

as claimed. Next we illustrate what happens when an index is repeated.

Example Some examples of repeated indices

If we take the expression
AαB

β (3.79)

and set α equal to β giving 10

AαB
α (3.80)

then the repetition of the Greek index α means that AαB
α is actually a sum of four terms

so one has
A repeated
Greek index
stands for
four termsAαB

α =

3
∑

α=0

AαB
α = A0B

0 +A1B
1 +A2B

2 +A3B
3 (3.81)

On the other hand if we repeat a Latin index then we sum over only three values. For
example one has

A repeated
Latin index
stands for
only three
terms

xkx
k =

3
∑

k=1

xkx
k = x1x

1 + x2x
2 + x3x

3 (3.82)

In calculus if
f = f(y0, y1, y2, y3) (3.83)

and one changes variables from

(y0, y1, y2, y3) to (x0, x1, x2, x3) (3.84)

then the chain rule for partial derivatives often throws up expressions such as

∂f

∂xα
=

∂f

∂y0

∂y0

∂xα
+

∂f

∂y1

∂y1

∂xα
+

∂f

∂y2

∂y2

∂xα
+

∂f

∂y3

∂y3

∂xα
(3.85)

which we can now abbreviate this to (note β is repeated but α is not)

10 The setting of one index equal to another, thereby producing a repeated index, is called contraction.
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The chain
rule written
using the
repeated
index rule

∂f

∂xα
=

∂f

∂yβ

∂yβ

∂xα
(3.86)

and so on; we shall meet more examples in subsequent calculations.
Contractions
are always
of upper in-
dices with
lower in-
dices

Finally, when calculating with repeated indices, it is important to notice that one only
ever contracts an upper index with a lower index: One never contracts two lower indices or
two upper indices. In fact the reader should not worry much about this matter because, in
routine calculations of invariant quantities—that is basis independent quantities—one will
only encounter instances of repeated indices where one index is upper and the other lower;
indeed an instance of a failure of this assertion is almost certainly an algebraic error.

Terminology (Four vectors or 4 vectors) The various mathematical objects
Four vectors

xµ, A
α, Bα (3.87)

discussed above are all vectors in Minkowski space with 4 components; such objects are often
referred to as four vectors or 4 vectors.

Example The length of a four vector A

It is also useful to write out the length (squared) A2 of an arbitrary four vector A in terms
of its components. We readily compute that

A = (A0, A1, A2, A3)

⇒ A2 ≡ gµνA
µAν = (A0)2 − (A1)2 − (A2)2 − (A3)2

= AµA
µ

(3.88)

Summarising we write
A2 = (A0)2 − (A1)2 − (A2)2 − (A3)2 (3.89)

which the reader will find a useful formula to remember.

Example The Lorentz transformation abbreviated

The summation convention allows to write the Lorentz transformation in a satisfyingly
abbreviated form: if we use four vector notation and write

(x0, x1, x2, x3) = (ct, x, y, z) and (y0, y1, y2, y3) = (ct′, x′, y′, z′) (3.90)

then statement 3.46 of the Lorentz transformation becomes simply

yα = Λα
βx

β (3.91)

§ 7. Lorentz transformations are linear

We want to show that the Lorentz transformations Λ are linear: that is the x′, y′, z′, t′

are linear functions of the x, y, z, t. This is accomplished by using the fact that a particle
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moving with constant velocity in the frame F must also have constant velocity in the other
inertial frame F ′. In other words if the particle is moving with constant velocity in F it
cannot appear to be accelerating in F ′.

For brevity we shall again use four vector notation; so, as before, we have
(x0, x1, x2, x3) = (ct, x, y, z) and (y0, y1, y2, y3) = (ct′, x′, y′, z′).

To this end, then, let the particle have coordinates

xα(τ) in F
yα(τ) in F ′

(3.92)

where τ is a parameter which determines the position of the particle on its path; it is clear
that, for constant velocity, we can assume that

dτ

dt
= A, A a constant

⇒ dt

dτ
=

1

A

(3.93)

Now its velocity is given by dxi(τ)/dt, i = 1, . . . 3, and so we compute that

dxi(τ)

dt
=
dxi(τ)

dτ

dτ

dt

= A
dxi(τ)

dτ
= a constant

(3.94)

But x0 = ct and so
dx0

dτ
=

c

A
= a constant (3.95)

and so dxα/dτ is constant for all four values α = 0, . . . 3. Hence constant velocity in F
means that

dxα

dτ
= a constant

⇒ d2xα

dτ2
= 0

(3.96)

But, using the same reasoning for F ′, we also have

dyα

dτ
= another constant

⇒ d2yα

dτ2
= 0

(3.97)

However the chain rule tells us that

dyα

dτ
=
∂yα

∂xβ

dxβ

dτ

⇒ d2yα

dτ2
=

∂2yα

∂xβ∂xγ

dxβ

dτ

dxγ

dτ
+
∂yα

∂xβ

d2xβ

dτ2

(3.98)
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But we have just seen in 3.96 and 3.97 that

d2yα

dτ2
= 0,

d2xβ

dτ2
= 0 (3.99)

So we deduce that
∂2yα

∂xβ∂xγ

dxβ

dτ

dxγ

dτ
= 0 (3.100)

and this must be true for arbitrary (constant) particle 4 vectors dxα/dτ so we conclude that

∂2yα

∂xβ∂xγ
= 0 (3.101)

and integrating twice we get

∂yα

∂xβ
= Cα

β , (Cα
β constant)

yα = Cα
β x

β +Dα, (Dα constant)
(3.102)

i.e. yα is a linear function of xβ as we claimed.
We can set Dα to zero since, as we said on p. 16, the spatial origins of the two frames

F and F ′ coincide when t = t′ = 0; this means that that xα = 0 ⇒ yα = 0 so that Dα = 0.
Hence and so we are just left with

yα = Cα
β x

β (3.103)

and this shows that the constants Cα
β are precisely the matrix entries Λα

β of 3.49.



CHAPTER IV

New properties for length and time

§ 1. Simultaneity is relative

O
ne of the first very striking and counter intuitive results of relativity is that the
simultaneity of two events is not an absolute notion but is only relative. This is
easy to prove.

We shall work with the frames F and F ′ of chapter 3 as this will make our formulae
depend only on x and t rather than x, y, z, t; there is no loss of generality in doing this.

Consider the Lorentz transformation as given in 3.33, that is

x′ = γ (x− vt)

t′ = γ
(

− v

c2
x+ t

) (4.1)

Take two events 1 and 2, with locations and times (x1, t1) and (x2, t2) respectively in F .
Now let 1 and 2 be simultaneous in F , so we have

Simultan-
eous in F

t1 = t2 (4.2)

The snag is that, as we shall now see,

t1 = t2 (4.3)

does not imply
t′1 = t′2 (4.4)

so 1 and 2 will not also be simultaneous in F ′. Let us verify this: using 4.1 gives us

t′1 = γ
(

− v

c2
x1 + t1

)

t′2 = γ
(

− v

c2
x2 + t2

) (4.5)

Subtracting the two equations, and remembering that t1 = t2, we get

t′1 − t′2 = γ
(

− v

c2

)

(x1 − x2)

6= 0, because x1 6= x2

(4.6)



30 Introduction to Relativity

Not simul-
taneous in
F ′

Hence 1 and 2 are not simultaneous in F ′.
So we have found a very important result: Simultaneity is only a relative concept,

relative, that is, to an inertial frame. Events which are simultaneous in one frame are not,
in general, simultaneous in another frame.

This relativity of simultaneity is also the key to understanding properly the famous
length contraction of a moving object. It is the subject of the next section.

§ 2. The Fitzgerald-Lorentz length contraction

We have already seen in chapter 1 that the negative result of the Michelson-Morley exper-
iment can be given a kind of ad hoc explanation by a contraction of the horizontal arm of
the interferometer by a factor

√

1 − v2

c2
=

1

γ
, γ =

1
√

1 − v2

c2

(4.7)

where v is the orbital velocity of the Earth. It is now time to show that length contraction
does happen in relativity and examine carefully its nature.

Take our customary pair of frames F and F ′ of figure 6. Next lay a rod of length L′ at
rest along the x′-axis of frame F ′.

Now let us calculate: Let the coordinates of the ends of the rod be

(x1, t1) and (x2, t2) in F

(x′1, t
′

1) and (x′2, t
′

2) in F ′
(4.8)

So we have
L′ = x′2 − x′1 (4.9)

What will an observer at rest in F measure the length to be? Well, first we define the length
of a moving rod to be the distance obtained by a simultaneous measurement of the positions
of its ends.

Note that we don’t have to worry about the values of the times t′1 and t′2 at which F ′

measures the ends of the rod: since the rod is at rest in F ′ he will get the same answers for
x′1 and x′2 whatever the values of t′1 and t′2.

So the observer at rest in F will say that the length of the moving rod is L where

L = x2 − x1 (4.10)

and he will also say that
t1 = t2 (4.11)

since he must measure both ends at the same time. But we can calculate this at once using
the Lorentz transformation 4.1. which gives us

x′1 = γ(x1 − vt1), x′2 = γ(x2 − vt2) (4.12)
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Hence we calculate that

x′2 − x′1 = γ {(x2 − x1) − v(t2 − t1)} (4.13)

But
(x′2 − x′1) = L′

(x2 − x1) = L

t1 = t2

(4.14)

so we have
L′ = γL (4.15)

and we see that the moving length L and the static length L′ obey the relation
The
Lorentz-
Fitzgerald
contraction
derived

L =
L′

γ
(4.16)

and

L < L′, since
1

γ
< 1 (4.17)

which is precisely the Lorentz-Fitzgerald result of chapter 1: the moving rod appears to
have a length shortened by the factor

√

1 − v2/c2 = 1/γ.
Symmetry
of length re-
sult between
in F and F ′

It is important to realise that a rod at rest in F would also appear contracted to an
observer at rest in F ′ and this does not contradict our first conclusion 4.16; thus the length
contraction result is symmetric under interchange of the two frames F and F ′.

The point is that neither observer will ever agree that both have measured the rods
properly since the measurements require a simultaneous measurements of both ends and,
as we have seen, if the measurements are simultaneous in one of the frames they are not
simultaneous in the other.

Moving
rods appear
shorter

Hence there is no contradiction. We can summarise the result by saying moving rods
appear contracted.

§ 3. Time dilation

Now we investigate the consequences of the Lorentz transformations for time. Consider a
clock at rest in the frame F ′; let an observer in F ′ read its time twice, comparing simulta-
neously with a standard clock of his own, thus obtaining the values

t′1, t
′

2 (4.18)

Now an observer in F , reading the same clock, will obtain the values

t1, t2 (4.19)

So the spacetime coordinates of the clock are

(x1, t1) and (x2, t2) in F

(x′1, t
′

1) and (x′2, t
′

2) in F ′
(4.20)
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So, in F ′, since the clock is at rest, we have

x′1 = x′2 (4.21)

and—because the algebra works better this way—we now use the inverse Lorentz transfor-
mation Λ−1, cf. 3.37 rather than Λ and compute that

t1 = γ
( v

c2
x′1 + t′1

)

t2 = γ
( v

c2
x′2 + t′2

) (4.22)

Subtracting these equations now gives

t2 − t1 = γ
{( v

c2

)

(x′2 − x′1) + (t′2 − t′1)
}

= γ(t′2 − t′1), because x′1 = x′2

(4.23)

So setting

T = t2 − t1, T ′ = t′2 − t′1 (4.24)

we have found that

T = γT ′ (4.25)

so
Moving
clocks run
slowT > T ′, since γ > 1 (4.26)

Hence the observer in F records longer times than those recorded in F ′; therefore he will
say that the moving clock is slow.

Symmetry
of clock re-
sult between
in F and F ′

Again, as in the length contraction discussion, the result is symmetric under interchange
of the two frames F and F ′. That is, a clock at rest in F would also appear slow, by
the same factor, to an observer in F ′. There are no contradictions in the physics just as
there were none in the length contraction case; the relativity of simultaneity is again the
essential ingredient which prevents there being a contradiction: in this case the observer in
F ′ would not see the comparisons with a standard clock made by the observer in F as being
simultaneous.

§ 4. Worldlines

As a particle both moves and exists in space and time it traces out a path in spacetime;
this path is called a worldline. Figure 7 shows two worldlines Γ1 and Γ2. We also show
just two spacetime axes x and t but of course there are four in reality; our two dimensional
representation is only for simplicity. In addition to x and t we show the axes x′ and t′ of
a another reference frame; these are drawn oblique to x and t so as to obey the Lorentz
transformation 4.1.
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Γ1
Γ2

����

P

x

tt
t

x

A spacetime
diagramFig. 7: Two worldlines Γ1 and Γ2 and a point P

The worldline Γ1 is straight and is that of a particle moving with constant velocity, the
other one Γ2 is curved and is traced out by a particle of varying velocity. Figure 7 is an
example of what is called a spacetime diagram.

A point in spacetime, such as P shown in figure 7, represents an event and it can
be given coordinates, say, (x, t); but these coordinates are not unique. For example if we
have our usual two reference frames F and F ′ then any event, like P , will have two sets of
coordinates

(x, t), and (x′, t′) (4.27)

and these will be connected to one another by a Lorentz transformation.
However, remember that the worldline itself is a representation of the history of a

particle which is independent of any frame of reference.
Worldlines
independent
of frame of
reference

This is the same as saying that a circle drawn on a plane has an equation which depends
on a choice of axes; but the circle itself is something absolute and independent of any set of
axes. So, in fact, spacetime diagrams give a representation of events which is independent
of any frame of reference.

A useful piece of terminology when discussing frames of reference is that of a rest frame
so we now introduce it.

A rest
frameTerminology (Rest frame) If a particle, or object, is at rest in an inertial frame F , then

F is called the rest frame of the object.

§ 5. Minkowski space: four vectors and light cones

Consider any four vector vµ. From the definition 3.55, its length squared in Minkowski
space is

gµνv
µvν (4.28)

Incidentally by our index lowering rule 3.76 we have

vµ = gµνv
ν (4.29)
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so it is true that

gµνv
µvν = vµv

µ (4.30)

This is a useful fact to remember.

We want to point out that that there are three possibilities for the magnitude of vµ;
these are described by three terms spacelike, timelike and lightlike which we now unveil.

Space-
like,timelike
and lightlikeTerminology (Spacelike, timelike and lightlike four vectors)

gµνv
µvν > 0, vµ is then called timelike

gµνv
µvν = 0, vµ is then called lightlike or null

gµνv
µvν < 0, vµ is then called spacelike

(4.31)

There is an important geometrical meaning to each of these three possibilities which we
now explain. It has to do with light cones. The equation

x2 + y2 + z2 − c2t2 = 0 (4.32)

for a light wave is actually the equation for a cone in Minkowski space. If we sup-
press the z coordinate, so that we can make a drawing, this cone is shown if figure 8

Past

Future

x

y

t

Fig. 8: A lightcone
We also show the future and the past.

It is now easy to check—for example just draw the picture with only two coordinates
(x, t)—that the sign of the magnitude vµv

µ of a four vector determines whether it is inside,
outside or on the light cone. We display the situation graphically in figure 9
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v

wu

w is spacelike

u is lightlike

v is timelike

Fig. 9: Spacelike, timelike and lightlike four vectors

We can now relate these facts to worldlines. Let ds be an element of length on the
worldline of a moving particle so that we have

ds2 = gµνdx
µdxν = c2dt2 − dx2 − dy2 − dz2 (4.33)

and the velocity v of the particle is given by

v =

(

dx(t)

dt
,
dy(t)

dt
,
dz(t)

dt

)

(4.34)

and suppose that ds2 is timelike. Then we have

ds2 = c2dt2 − dx2 − dy2 − dz2 > 0

⇒ c2 −
(

dx

dt

)2

−
(

dy

dt

)2

−
(

dz

dt

)2

> 0

⇒ c2 > v2

(4.35)

In other words

v < c (4.36)

so the particle is moving slower than the velocity of light.
Timelike
worldline
v < c

A worldline which permanently has this property—i.e. that ds2 is always positive—is
called a timelike worldline. So the velocity of a particle with a timelike worldline, though
it can vary, always has magnitude less than c. It is also true that the worldline is always
inside any light cone that has its vertex on it—cf. figure 10.
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Fig. 10: A timelike worldline
Conversely if we consider a worldline with ds2 < 0 always—a spacelike worldline— then

the same argument with appropriate changes of sign would show that
Spacelike
worldline
v > cv > c (4.37)

so that a particle with this worldline would have exceeded the velocity of light which we
know is impossible. Hence physical objects cannot have spacelike worldlines.

Finally a worldline with ds2 = 0 always—a lightlike worldline—must be that of some-
thing travelling with velocity

Lightlike
worldline
v = cv = c (4.38)

Furthermore these properties of worldlines are independent of any reference frames:
this is clear since the properties all depend on the Lorentz invariant object

ds2 (4.39)

which has the same value in all reference frames.

§ 6. Proper time

Time is no longer absolute in relativity; we have seen that it is local to a particular reference
frame. The absence of an absolute time in relativity creates problems; these can be partially
remedied by the introduction of what is called proper time which is denoted by

τ (4.40)

Proper time is defined so that it has the same value in all inertial frames and is therefore a
Lorentz invariant quantity.

It is very convenient to define proper time infinitesimally; that is to say one defines

dτ (4.41)

first rather than defining τ .
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Here is how it goes first we define the spacetime separation ds between the two points

(x, y, z, t), and (x+ dx, y + dy, z + dz, t+ dt) (4.42)

by writing
ds2 = c2dt2 − dx2 − dy2 − dz2 (4.43)

Then dτ is defined by

dτ =
ds

c
, provided ds is real

i.e. provided ds2 > 0
(4.44)

Note carefully the restriction to timelike separation ds—i.e. ds2 > 0—this means
that ds is a portion of a timelike worldline and hence represents the history of something
travelling with less than the velocity of light.

Now consider a particle moving—for example consider the worldlines Γ1 or Γ2 of figure
7—then x, y, z all depend on the time t and we have

v =

(

dx(t)

dt
,
dy(t)

dt
,
dz(t)

dt

)

|v| =

√

(

dx(t)

dt

)2

+

(

dy(t)

dt

)2

+

(

dz(t)

dt

)2

= v

(4.45)

where v need not be constant.
But if ds is an element of length one of these worldlines then we can extract a factor

of dt2 and work as follows

ds2 = c2dt2 − dx2 − dy2 − dz2

=

{

c2 −
(

dx

dt

)2

−
(

dy

dt

)2

−
(

dz

dt

)2
}

dt2

= (c2 − v2)dt2

⇒ ds2 = c2
{

1 − v2

c2

}

dt2

(4.46)

Now we divide both sides by c2 and take the square root obtaining

ds

c
=

√

1 − v2

c2
dt (4.47)

that is

dτ =

√

1 − v2

c2
dt, by definition 4.44

i.e. dτ =
dt

γ
, γ =

1
√

1 − v2

c2

(4.48)
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Note that, when v = 0, we have

dτ = dt, (for v = 0) (4.49)

and t and τ coincide i.e. τ is the normal time measured in the rest frame of the particle;
this is a good way of thinking about τ .

In the next section we discuss the very interesting subject known as the twin paradox.

§ 7. The twin paradox

Consider the following story: A pair of twins live on the Earth; one goes on a very high
speed journey into space and eventually returns to the Earth. At their reunion the twins
compare clocks and find, that, because of time dilation, much less time has elapsed for
the twin who made the journey than for the one who stayed behind. Hence the twin who
travelled is younger.

This appears to be a paradox because we saw, in § 3, that time dilation was symmetrical
between a pair of inertial frames F and F ′; so does the twin story contradict that assertion?

The answer is no: indeed there is no symmetry because the twin story does not involve
two inertial frames but only one. The twin who stays at home is in an inertial frame but the
one who travels undergoes acceleration to reach a high velocity and deceleration to come
back. Hence the second twin, because of the varying velocity, was not in an inertial frame.
This absence of symmetry means that there is no contradiction and the travelled twin is
younger. We now prove this.

The ingredients we need for the proof are worldlines and proper time. Let the twin
on the Earth have worldline Γ1 and the other have word line Γ2. Figure 11 shows the
worldlines; note that they must both begin and end at the same pair of spacetime points.

Γ1 Γ2

t1

t2

x

tt

x

tt

Fig. 11: The worldlines Γ1 and Γ2 of the twins

Let the journey begin at time t1 and end at time t2; this time will be the same for both
twins. Now if T1 is the time elapsed for the Earthbound twin and T2 the time elapsed for
the travelling twin; then T1 and T2 are given by the total proper time for each worldline.
Thus we have

T1 =

∫

Γ1

dτ, T2 =

∫

Γ2

dτ (4.50)
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But along Γ1, the twin has zero velocity v so

dτ = dt, using 4.49

⇒
∫

Γ1

dτ =

∫ t2

t1

dt

= t2 − t1

(4.51)

So we have
T1 = t2 − t1 (4.52)

But for the travelling twin we have

∫

Γ2

dτ =

∫ t2

t1

√

1 − v2

c2
dt, using 4.48 (4.53)

giving

T2 =

∫ t2

t1

√

1 − v2

c2
dt (4.54)

However, remembering that

√

1 − v2

c2
< 1, since 0 < v < c (4.55)

it is immediate that,
∫ t2

t1

√

1 − v2

c2
dt <

∫ t2

t1

dt (4.56)

since the integrand
√

1 − v2

c2 of the first integral is less than that of the second integral for

that part where v 6= 0.
So we have proved that

T2 < T1 (4.57)

meaning that the travelled twin is indeed younger.



CHAPTER V

Relativistic kinematics

§ 1. Relativistic addition of velocities

I
n this chapter we want to study the kinematics of particles and see what changes rela-
tivity brings. The first thing we examine is the matter of relative velocities.
Consider three inertial frames F , F1 and F2. Let

F1 have a velocity v1 relative to F

F2 have a velocity v2 relative to F1

(5.1)

Then, in Newtonian physics, we would say that the velocity of the frame F2 relative to F
is Newtonian

result
v1 + v2 (5.2)

However, in special relativity, this is false and the correct result is
Relativistic
resultv1 + v2

1 + v1v2

c2

(5.3)

We now prove this.
We shall simplify matters by working in a two dimensional spacetime so that, using

3.25 and 3.28, a Lorentz transformation Λ has the form

Λ =

[

cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

]

, tanh(θ) = −v
c

(5.4)

Now consider two Lorentz transformations ΛFF1
and ΛF1F2

. Let

ΛFF1
transform coordinates from F to F1

ΛF1F2
transform coordinates from F1 to F2

(5.5)

So this means that

ΛFF1
=

[

cosh(θ1) sinh(θ1)
sinh(θ1) cosh(θ1)

]

, tanh(θ1) = −v1
c

ΛF1F2
=

[

cosh(θ2) sinh(θ2)
sinh(θ2) cosh(θ2)

]

, tanh(θ2) = −v2
c

(5.6)
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Now we want to Lorentz transform from F to F2; this we can do by applying ΛFF1
followed

by ΛF1F2
; calling this Lorentz transformation ΛFF2

, we have

Mk
ΛF F1−−−−−−→ Mk

ΛF1F2−−−−−−→ Mk

ΛFF2
= ΛF1F2

ΛFF1

(5.7)

So, using our expressions for ΛF1F2
and ΛFF1

, we readily compute that

ΛFF2
=

[

cosh(θ2) sinh(θ2)
sinh(θ2) cosh(θ2)

] [

cosh(θ1) sinh(θ1)
sinh(θ1) cosh(θ1)

]

=

[

cosh(θ2) cosh(θ1) + sinh(θ2) sinh(θ1) sinh(θ2) cosh(θ1) + cosh(θ2) sinh(θ1)
sinh(θ2) cosh(θ1) + cosh(θ2) sinh(θ1) sinh(θ2) sinh(θ1) + cosh(θ2) cosh(θ1)

]

(5.8)
But cosh and sinh obey the addition formulae

cosh(A+B) = cosh(A) cosh(B) + sinh(A) sinh(B)

sinh(A+B) = sinh(A) cosh(B) + cosh(A) sinh(B)
(5.9)

So, setting θ2 = A and θ1 = B we immediately conclude that

ΛFF2
=

[

cosh(θ1 + θ2) sinh(θ1 + θ2)
sinh(θ1 + θ2) cosh(θ1 + θ2)

]

(5.10)

We see that ΛFF2
is a Lorentz transformation whose velocity vrel relative to F is given by

tanh(θ1 + θ2) = −vrel

c
, using 5.4 (5.11)

However we know, from 2.16, that

tanh(θ1 + θ2) =
tanh(θ1) + tanh(θ2)

1 + tanh(θ1) tanh(θ2)
(5.12)

so, taking tanh(θ1) and tanh(θ2) from 5.6, we deduce that

−vrel

c
=

−v1/c− v2/c

1 + v1v2

c2

(5.13)

which tidies up to the desired equation, namely
Relativistic
law for rel-
ative veloci-
ties

vrel =
v1 + v2
1 + v1v2

c2

(5.14)

in agreement with 5.3.
Note that, as one might expect, if v1 and v2 are both much less that c, we have, to a

good approximation, the old Newtonian result. More precisely

v1 << c
v2 << c

}

⇒ v1 + v2
1 + v1v2

c2

≈ v1 + v2 (5.15)
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Finally let us point out an alternative rather neat way of stating the velocity addition
formula 5.14. Define the hyperbolic angles θ(v1), θ(v2) and θ(vrel) by writing

tanh(θ(v1)) = −v1
c
, tanh(θ(v2)) = −v2

c
, tanh(θ(vrel)) = −vrel

c

then we know that velocity addition formula 5.14 just says that

tanh(θ(vrel)) = tanh(θ(v1) + θ(v2)) (5.16)

which implies the simple additive formula

θ(vrel) = θ(v1) + θ(v2) (5.17)

which is equivalent to 5.14.
The variable −θ(v), or simply −θ if the context allows, is called the rapidity; cf. also

the footnote on p. 17. So we have
Rapidity
defined− θ(v) is called the rapidity

where tanh(θ(v)) = −v
c

and equation 5.17 is referred to as the additivity of rapidities between inertial frames.

§ 2. Relativity and equations of motion

In this section we study the equations of motion of a particle of mass m; while doing so
we must remember that Einstein’s relativity principle says that such equations must be the
same in all inertial frames. This means that we shall need to reformulate the old Newtonian
equations of motion in order to make them relativistically invariant.

What we require therefore is that the equations of motion of a particle should be
invariant under Lorentz transformations.

Figure 12 shows a particle of mass m tracing out a path r(t) where

r(t) = x(t)i + y(t)j + z(t)k ≡ (x(t), y(t), z(t)) ≡ xi(t) (5.18)

This is a
three dimen-
sional pic-
ture: it does
not show a
worldline

r(t)

x

y 

z

Fig. 12: The path r(t) of a particle subject to a force F
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Thus, in Newtonian physics, if a force F is applied the particle, and the particle has
momentum 1 pN with

pN = mv (5.19)

Newton’s second law gives the equation of motion for a particle as being
Newtonian
equation of
motiondpN

dt
= F (5.20)

This equation can be regarded as a definition of what we mean by a force F. Now this
equation is not invariant under a Lorentz transformation—it is an equation between three
vectors; to obtain equations of motion which are invariant under Lorentz transformations
the key idea is to use four vectors—we must equate four vectors to four vectors. A further
key ingredient is that we should use the proper time τ ; recall that τ is a Lorentz invariant
quantity.

Figure 13 shows the particle’s worldline Γ—depicted for simplicity in just two spacetime
dimensions—on which the particle’s position is denoted by xµ(τ), τ being the particle’s
proper time.

The parti-
cle’s world-
line

xµ(τ)

x

t

Γ

Fig. 13: The worldline Γ of the particle
The solution to our difficulties is to use Γ and to replace
(i) The time t by

τ (5.21)

(ii) The position three vector 2 r(t) = xi(t) by the four vector

xµ(τ) (5.22)

1 Note carefully that we denote the Newtonian momentum by pN to remind the reader that it is the

Newtonian momentum. Later we shall use the symbol p to denote three of the components of what is called

the four momentum.
2 Remember, from § 4 of chapter 3 , that Latin indices run through three values while Greek run through

four.
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(iii) The three velocity v = dxi/dt by the four velocity

dxµ

dτ
(5.23)

(iv) The three momentum pN = m(dxi/dt) by the four vector p = (p0, p1, p2, p3), where

pµ = m
dxµ

dτ
(5.24)

Finally our new relativistic equation of motion—which replaces Newton’s equation of
motion 5.20— is

New rel-
ativistic
equation of
motion

dpµ

dτ
= Fµ (5.25)

which can be regarded as defining the new four vector Fµ known as the four force.
dxi/dt is
tangent to
r(t) while
dxµ/dτ is
tangent to Γ

Notice that the velocity v = dxi/dt, which is a three vector, and is tangent to the path
r(t) = xi(t) in three dimensions, is replaced by the four vector dxµ/dτ which is tangent to
the path Γ in four dimensions, that is the the worldline.

Actually, the most important new vector here is the four momentum p; so let us spell
out some details. We do this in the next section.

§ 3. Energy, mass and four momentum

For the ordinary three momentum pN we have

pN = mv = m

(

dx

dt
,
dy

dt
,
dz

dt

)

(5.26)

while for the new object, the four momentum p = (p0, p1, p2, p3) we have

pµ = m
dxµ

dτ

= m
dxµ

dt

dt

dτ

= γm
dxµ

dt
, since

dt

dτ
= γ from 4.48

(5.27)

Continuing our elucidation of pµ, we calculate that

γm
dxµ

dt
= γm

(

d(ct)

dt
,
dx

dt
,
dy

dt
,
dz

dt

)

= (γmc, γmv)

= (γmc, γpN ), using 5.26

(5.28)

So we have found that the four momentum p = (p0, p1, p2, p3) of a particle of mass m is
given by
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The four
momentum
pp = (γmc, γpN ) (5.29)

where pN = mv is the ordinary three momentum.
Now we want to understand the physical meaning of the four components of the four

momentum p: well the last three components are given by

γpN = γmv (5.30)

so they are like the Newtonian three momentum pN except that the mass m is multiplied
by the factor γ—thus the “effective” mass is now not m, but γm, where

γm =
m

√

1 − v2

c2

(5.31)

using the value of γ. So the mass m for a moving particle gets replaced by

m
√

1 − v2

c2

(5.32)

Moving par-
ticles get
heavier

This is really what does happen experimentally: in other words we have the very
striking fact that moving particles get heavier and have a mass given by 5.32.

The ordinary mass m is called the rest mass of the particle and is sometimes denoted 3

by
m0 (5.33)

where the zero reminds us that the particle is at rest.
Notice that

m
√

1 − v2

c2

−→ ∞, for v −→ c (5.34)

Speed
of light
unattainable
if m > 0

Thus a particle moving at the speed of light would have infinite mass; it would also
have required an infinite amount of energy to accelerate it from rest up to velocity c, so
this is a way of seeing that the speed of light is not attainable for a particle of positive rest
mass, i.e. m > 0.

As well as having positive rest mass one can have zero rest mass as we now explain: A
particle of light is known as a photon and, by definition, it travels at velocity c: a photon
has the important property of having rest mass zero, i.e.

Photons
have zero
rest massm = 0, for a photon

(or m0 = 0 in the alternative notation)
(5.35)

3 Look out if you are reading a textbook which uses m0 for rest mass; it is very likely to then use m to
stand for m0√

1−v2/c2
; a quantity which we would denote by γm.

Looseness in the language used in relativity can sometimes result in the word mass being used to refer

to the quantity γm; be careful that this does not confuse you—confusion is fairly unlikely as the context

usually makes it quite clear whether m or γm is meant.
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This fact that m = 0, for a photon, avoids any infinite energy argument such as the one
above.

We have seen the physical significance of three of the components pµ; what about p0

which is the remaining component? This is the subject of the next section

§ 4. The equation E = mc2

We have found that
p0 = γmc =

mc
√

1 − v2

c2

(5.36)

Note, first, that if we introduce the quantity E by writing

p0 =
E

c
(5.37)

then E has the dimensions of energy; we would like to find an expression for E. To this end
expand γ in powers of v2/c2 yielding

γ =
1

√

1 − v2

c2

=

(

1 +
1

2

v2

c2
+ · · ·

)

(5.38)

Then combining 5.36 and 5.37 gives us

E

c
=

mc
√

1 − v2

c2

⇒ E =
mc2

√

1 − v2

c2

⇒ E = mc2
(

1 +
1

2

v2

c2
+ · · ·

)

, using 5.38

⇒ E = mc2 +
mv2

2
+ · · ·

(5.39)

Now if we peruse the last line of 5.39 we see that the second term is just the usual kinetic
energy

Kinetic en-
ergy con-
tained in
the relativis-
tic energy

mv2

2
(5.40)

but the first term is simply
mc2 (5.41)

However this term mc2, unlike the kinetic energy, is independent of the velocity of the
particle and is non-zero even when the particle is at rest.
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It was this that led Einstein to boldly suggest 4 that

E =
mc2

√

1 − v2

c2

(5.42)

is the energy of a particle of mass m whether it is at rest or in motion.
E = mc2, at
last we have
it

Thus a particle of mass m at rest has energy E given by

E = mc2 (5.43)

and we now have arrived at this famous equation.
Equivalence
between
mass and
energy

The content of the statement E = mc2 is that there is an equivalence between mass
and energy, i.e. that they are just different forms of the same thing; further, these two forms
can be converted into one another: One can convert mass into energy—and also energy into
mass.

However, like all theoretical statements, experiments must provide the ultimate tests
of their validity. The equivalence between mass and energy asserted by E = mc2 has been
tested many times—cf. § 8 of chapter 7—and has been found to be perfectly correct.

The amount of energy locked up in a small amount of matter is gigantic. For example
if we take

m = 1 gram (5.44)

then, since c = 3 × 1010 cm/sec, we compute that
Enormity of
the energy
locked up in
matter

E = mc2

= 1 ·
(

3 × 1010
)2

ergs

= 9 × 1020 ergs

(5.45)

Now a 100 watt light bulb consumes

100 joules/sec, (1 joule= 107 ergs.) (5.46)

and a reasonable electricity power station has a power measured in hundreds of megawatts
(MW). So 1 gram of matter could provide enough energy for a 500MW power station to
run for

9 × 1020

500 × 106 × 107
= 1.8 × 105 secs

= 2.08 days

(5.47)

a pretty impressive statistic. Unfortunately for mankind the sheer size of these energies has
also been a focus of military interest. 5

4 Turn to chapter 8, § 2 if you want to peruse the original three page paper
5 This energy is about the same amount of energy released in an atomic explosion. The energy released

by an atomic bomb is usually specified by quoting the number of tons of TNT which would explode with

the same energy: exploding one ton of TNT releases 4.184 × 109 joules and so a 21.5 kiloton explosion

is equivalent to 9 × 1020 ergs. The atomic bombs tragically dropped on Hiroshima and Nagasaki in 1945

had energies of 15 and 21 kilotons respectively. Bombs with sizes measured in tens of megatons were once

exploded in various nuclear tests.
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§ 5. Summary of four momentum properties

It is useful to have a small section which summarises the properties and notation of the four
momentum of a particle of (rest) mass m.

First of all we denote the four momentum by

p (5.48)

where
p = (p0, p1, p2, p3) (5.49)

We shall sometimes abbreviate the last three components (p1, p2, p3) by p—in other words
we may write

p = (p1, p2, p3) (5.50)

This means that we can abbreviate the four momentum by writing

p = (p0,p) (5.51)

Also p0 and p are related to energy E and the Newtonian momentum pN by

p0 =
E

c
, (E = γmc2) p = γpN , (pN = mv) (5.52)

If v = 0—i.e. the particle is at rest—then then
In its rest
frame the
four mo-
mentum
p takes
the simple
form p =
(p0, 0, 0, 0).

γ = 1, and p = (p0, 0, 0, 0) (5.53)

so that the statement E = γmc2 becomes

E = mc2 (5.54)

as we saw in 5.42 and 5.43.
Finally the Minkowski squared length of the four momentum p—which, of course, the

same value in all frames of reference is given, using 3.89, by

p2 = (p0)2 − (p1)2 − (p2)2 − (p3)2 (5.55)

But 5.52 tells us that

p0 =
E

c
=
γmc2

c
p = γmv (5.56)

So
p2 = m2γ2c2 −m2γ2v2

= m2γ2(c2 − v2)

= m2 (c2 − v2)
(

1 − v2

c2

) , using γ =
1

√

1 − v2

c2

= m2c2
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Hence we have learnt that
An impor-
tant result:
p2 = m2c2p2 = m2c2 (5.57)

and this is a very elegant and important result: the length of the four momentum vector p
of a particle is determined solely by its mass m.

In the next section we want to look at the four momentum of a photon. Since the
photon has zero rest mass this is something of a special case.

§ 6. Four momentum of photons

We suppose that we have a photon of four momentum

p = (p0, p1, p2, p3) (5.58)

Then because a photon has zero rest mass—i.e. m = 0—we have
p2 = 0 for
photons

p2 = 0

i.e. (p0)2 − (p1)2 − (p2)2 − (p3)2 = 0
(5.59)

But p0 = E/c where E is the energy so we have

p = (E/c, p1, p2, p3) (5.60)

Suppose we specialise to the case where p1 = p2 = 0—which we can do without loss of
generality by rotating our spatial axes so that the photon travels along the z axis—then we
have

p = (E/c, 0, , 0, p3) (5.61)

But now the p2 = 0 condition says that

E2

c2
− (p3)2 = 0 (5.62)

so that

p3 = ±E
c

(5.63)

We shall choose

p3 = +
E

c
(5.64)

which means that the photon is traveling along the z axis in the positive z direction. Hence
its four momentum p is now given by

p = (
E

c
, 0, 0,

E

c
) (5.65)

Finally if we know that the frequency of the photon is ν, then quantum theory tells us
that

E = hν (5.66)
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where h is Planck’s constant. This our final expression for the four momentum of a photon
of frequency ν is

The four
momentum
of a photon
of frequency
ν.

p = (
hν

c
, 0, 0,

hν

c
) (5.67)

This latter expression can often be useful.
No rest
frame for
a photon

Note, by the way, that a photon has no rest frame: it moves permanently at the velocity
c of light now matter what frame it is viewed from; indeed this is simply Einstein’s second
postulate.

§ 7. A few useful four vector properties

Here is a piece of four vector terminology.

Terminology (Future pointing) A four vector v = (v0, v1, v2, v3) is called future pointing
if

v0 > 0 (5.68)

If one refers to figure 9 one sees that the vector v is future pointing; this reveals the origin
of the phrase future pointing.

It is very useful to know that the sum of two, future pointing, timelike vectors is timelike
and we know prove this.

Example The sum of timelike, future pointing, vectors is timelike

Let p and q be two timelike, future pointing, four vectors so we have, in some frame F ,

p = (p0, p1, p2, p3), q = (q0, q1, q2, q3)

and

p2 = (p0)2 − (p1)2 − (p2)2 − (p3)2 > 0
p0 > 0

q2 = (q0)2 − (q1)2 − (q2)2 − (q3)2 > 0
q0 > 0

(5.69)

Now what about p+ q? Well

(p+ q)2 = p2 + q2 + 2p · q (5.70)

where p · q is the four dimensional dot product in Minkowski space—that is
Minkowski
dot product

p · q = p0q0 − p1q1 − p2q2 − q3q3 (5.71)

Remember, too, that p · q is a Lorentz invariant object, hence it will have the same value
in all rest frames. Now let the frame F be the rest frame of the four vector p; then 6

p1 = p2 = p3 = 0 and p becomes
p = (p0, 0, 0, 0) (5.72)

6 To this remember that because p is timelike it could be the 4 momentum p of some particle moving

less than the velocity of light, but such a particle has a rest frame, and, in its rest frame, p = (p0, 0, 0, 0),

cf. 5.53.
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so we compute that

p · q = p0q0, since F is the rest frame of p (5.73)

Hence
(p+ q)2 = p2 + q2 + 2p0q0 (5.74)

But, by assumption, p2, q2 and p0 and q0 are all positive therefore

(p+ q)2 > 0 (5.75)

and p+ q is timelike as claimed.

§ 8. Conservation of energy and momentum

In Newtonian physics we are used to the conservation of both energy E and momentum
pN ; this gives us two conservation laws.

Four mo-
mentum is
conserved

In relativistic physics E and p are still conserved but their conservation is described by
a single conservation law. This single conservation law simply states that four momentum
p is conserved.

In this way we see that the unification of space and time achieved by using Minkowski
space has a parallel. This is that the unification of E and p into the single four vector
p = (p0, p1, p2, p3) allows both energy and momentum to be studied in one four dimensional
space 7: the space of all possible four momenta—geometrically speaking this space is just a
copy of Minkowski space.

We shall illustrate four momentum conservation by considering the collision or scatter-
ing of two particles cf. figure 14.

p
 1 

p
3  

p
2 p

4

Fig. 14: Two to two particle scattering

7 Here is a remark purely for readers who know quantum mechanics and how it makes use of the Fourier

transform. The Fourier transform f̂ of a function f(t,x), in quantum mechanics, is defined by

f̂(E,p) =
1

(2π)2

∫

∞

−∞

e(iEt/h̄)e(ip·x/h̄)f(t,x) dt d3x

Hence one should realise that, E is dual to, or paired with, t, as is p with x. Hence the unification of t and

x achieved by Minkowski space automatically induces a unification of E and p.
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The scattering consists of two initial particles, of four momenta p1 and p2; and two final
particles, of four momenta p3 and p4. The two initial particles collide and scatter to give
the two final particles. Conservation of four momentum means that

p1 + p2 = p3 + p4 (5.76)

This guarantees that the

total initial energy = total final energy

total initial three momentum = total final three momentum
(5.77)

To see this in more detail we display the components of the four momenta by writing

p1 = (p0
1, p1) p3 = (p0

3, p3)

p2 = (p0
2, p2) p4 = (p0

4, p4)
(5.78)

So
p1 + p2 = (p0

1 + p0
2, p1 + p2) and p3 + p4 = (p0

3 + p0
4, p3 + p4) (5.79)

Now, remembering that any four momentum p is given by p = (E/c,p), and applying

p1 + p2 = p3 + p4 (5.80)

gives
p0
1 + p0

2 = p0
3 + p0

4

⇒ E1 + E2 = E3 + E4, energy conservation

p1 + p2 = p3 + p4, three momentum conservation

(5.81)

So we do indeed get both energy and three momentum conservation from four momentum
conservation.

One can also scatter more than 2 particles together—say n particles—which, after
scattering become m particles, and m need not equal n; this is shown in figure 15.

p
 1 

p
2

p
n+1

p

p

n
p
n+m

n+2

Fig. 15: n to m particle scattering
To see why m need not equal n remember that mass is not conserved in relativity and energy
and mass are inter-convertible. For instance there are many unstable particles, one example
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being the π+ meson. The π+ meson decays into three particles—cf. figure 16—and this
process has n = 1 and m = 3.

π+
γ

νe

e+

Fig. 16: The decay of a π+ meson
The three decays products are: a positron, an anti-electron neutrino and a photon and these
are denoted by the symbols e+, ν̄e and γ respectively—cf. equation 5.82

π+−−−−−−→ e+ + ν̄e + γ (5.82)

Another process where n 6= m is that of particle production: for example the collision
of two protons to produce a π0 meson, cf. equation 5.83

p+ p −−−−−−→ p+ p+ π0 (5.83)

so that we have n = 2 and m = 3.
But, whatever the values n and m of the numbers of initial and final particles, the total

four momentum must be conserved. In other words we must have

p1 + p2 + · · · + pn = pn+1 + pn+2 + · · · + pn+m (5.84)

§ 9. The centre of mass frame

The Newtonian centre of mass of a set of (possibly moving) particles is not very useful in
relativity. However we can introduce, not a distinguished position vector—which is what
the centre of mass is—but a distinguished frame known as the centre of mass frame. In
relativistic kinematics the centre of mass frame assumes the importance previously held by
the Newtonian centre of mass. We now explain these remarks.

First recall that, in Newtonian physics, if we have n particles with masses and positions
given by mi (mi > 0) and ri respectively then the centre of mass of this system is given by
the vector r̄ where

r̄ =
m1r1 +m2r2 + · · · +mnrn

m1 +m2 + · · · +mn
(5.85)
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However, if we allow each particle to have a velocity vi, and set γi = 1/
√

1 − v2
i /c

2, then
each mi will be replaced in the relativistic equations of motion (cf. 5.25) by

γimi =
mi

√

1 − v2

i

c2

, i = 1, . . . , n (5.86)

Hence, in a relativistic world, a more sensible quantity than r̄ would be obtained by replacing
mi by γimi giving us the vector r̄rel—the relativistic centre of mass—which is defined by

r̄rel =
γ1m1r1 + γ2m2r2 + · · · + γnmnrn

γ1m1 + γ2m2 + · · · + γnmn
(5.87)

We see, though, that r̄rel depends on the frame being used and so is not unique.
Now we come to the centre of mass frame: The centre of mass frame for a system of

n particles is defined to be that frame for which the total relativistic three momentum p is
zero; 8 i.e. one has

Centre of
mass frame

p1 = (E1/c,p1)
p2 = (E2/c,p2)

...
...

pn = (En/c,pn)















but p1 + p2 + · · · + pn = 0 (5.88)

Notice that, in the centre of mass frame, the total four momentum is not zero, rather we
have

p1 + p2 + · · · + pn = (
E1

c
+
E2

c
+ · · · + En

c
,p1 + p2 + · · · + pn)

⇒ p1 + p2 + · · · + pn = (
n

∑

i=1

Ei

c
, 0, 0, 0)

(5.89)

So the centre of mass frame is just the rest frame of the four vector p.
Returning to the contrast between the centre of mass and the centre of mass frame, we

can now say the following.
If the particles behave like relativistic billiard balls—i.e. they just collide with one

another and are subject to no other forces—then, in the centre of mass frame, the relativistic
centre of mass, r̄rel, is at rest. However, since relativistic physics allows the very number of
particles to change—as we saw in figure 5.82 and 5.83—this billiard behaviour is very often
not realised. This results in a consequent decline in importance for the relativistic centre of
mass r̄rel in favour of the centre of mass frame.

Finally some material included just for the curious reader, who may wonder: is there
still a centre of mass frame if some, or all, of the pi in the expression

p = p1 + p2 + · · · + pn (5.90)

8 For such a frame to exist the four momentum p must be timelike. But all the pi have p0
i > 0, since p0

i

is the energy of a particle and must be positive; so all the pi are future pointing; they are also all timelike

since p2
i = m2

i > 0. Thus p, being a sum of timelike, future pointing, four vectors, is indeed timelike—cf.

the proof in the example on p. 50.
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are those of zero rest mass particles: that is to say some of the pi are lightlike? The answer—
which is easy to verify by redoing through the calculations of the example on p. 50—is that
if at least one of the pi is timelike, then p is timelike and the centre of mass frame still exists.

However if all of the pi are lightlike then the centre of mass frame may or may not
exist. For example if

n = 2 (5.91)

and
p = p1 + p2, with p2

1 = p2
2 = 0 (5.92)

then it is a simple matter to check that, if p1 is parallel to p2, i.e.

p1 = λp2, λ a constant (5.93)

then p is automatically lightlike and the centre of mass frame does not exist. But, if p1 is
not parallel to p2, the centre of mass frame does exist because it is then easy to check that
(p1 + p2)

2 is positive.
So a system of just two photons must be non-parallel for there to exist a centre of

mass frame; if there are more than two photons it is enough that at least two of them are
non-parallel for the centre of mass frame to exist.

This last point is easily proved as follows: without loss of generality we can take the
two non-parallel photons to have four momenta p1 and p2. Then the four vector p1 + p2 is
timelike and we can reuse the argument above that asserts that the centre of mass frame
exists if at least one four momentum in the sum giving p is timelike.

§ 10. Threshold energies

In this section we study the creation of new particles by scattering such as in the process
5.83 which, we recall, was

p+ p −−−−−−→ p+ p+ π0 (5.94)

This process is christened π0 production after the new particle π0 which is being created.
Suppose that the experimental setup is that one proton is at rest and is bombarded by

the other.
We now ask a simple kinematical question which is this: what is the minimum energy

needed by the moving proton to be able to create a π0 meson?
The thresh-
old energy
for π0 pro-
duction

This minimum energy is then called a threshold energy and we shall now calculate it.
Denote the (rest) masses of the proton and the π0 by M and m respectively and let the
initial state protons have four momenta p1 and p2 where

p1 = (E/c, p1, p2, p3) The moving proton
p2 = (Mc, 0, 0, 0) The proton at rest

(5.95)

In the final state let the four momenta be

p3 One of the protons
p4 The other proton
p5 The π0

(5.96)
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Four momentum conservation says that

p1 + p2 = p3 + p4 + p5 (5.97)

so that it is also true that,
(p1 + p2)

2 = (p3 + p4 + p5)
2 (5.98)

But
(p1 + p2)

2 = p2
1 + 2p1 · p2 + p2

2

= 2M2c2 + 2EM
(5.99)

using p2
1 = p2

2 = M2c2 and 5.95 Also, for the final state, we have

(p3 + p4 + p5)
2 = (p3 + p4)

2 + 2(p3 + p4) · p5 + p2
5

= p2
3 + 2p3 · p4 + p2

4 + 2p3 · p5 + 2p4 · p5 + p2
5

(5.100)

But, again, we know that

p2
3 = p2

4 = M2c2, M being the proton rest mass

p2
5 = m2c2, m being the π0 rest mass

(5.101)

so we have

(p3 + p4 + p5)
2 = 2M2c2 +m2c2 + 2(p3 · p4 + p3 · p5 + p4 · p5) (5.102)

Now to compute the Minkowski dot products, which are all of the form

pi · pj (5.103)

we go to the rest frame of either pi or pj—it doesn’t matter which—and for definiteness we
shall choose the rest frame of pi. To this end let

vij (5.104)

denote the velocity of pj in the rest frame of pi and let the mass of pi be denoted by mi

then, in this frame, we have

pi = (mic, 0, 0, 0), pj = (γ(vij)mjc, γ(vij)mjvij) (5.105)

Hence, for the dot product, we immediately calculate that

pi · pj = γ(vij)mimjc
2 (5.106)

Now, using 5.106, we find that

(p3 + p4 + p5)
2 = 2M2c2 +m2c2 + 2(γ(v34)M

2c2 + γ(v35)Mmc2 + γ(v45)Mmc2) (5.107)
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Thus the statement
(p1 + p2)

2 = (p3 + p4 + p5)
2 (5.108)

of 5.98 becomes

2M2c2 + 2EM = 2M2c2 +m2c2 + 2(γ(v34)M
2c2 + γ(v35)Mmc2 + γ(v45)Mmc2) (5.109)

and we now want the minimum value of E—the incident proton’s energy—for which this is
true. But the only variables are the γ(vij) factors on the RHS; and since all terms on the
RHS are positive the minimum is obtained by minimising these γ(vij), this is trivial to do
since the minimum value of any γ(vij) is unity which is achieved when vij = 0. Hence the
minimum energy is given by setting all the γ(vij) to unity in 5.109. This is what we have
called the threshold energy above and so it is given by E where

2M2c2 + 2EM = 4M2c2 +m2c2 + 4Mmc2 (5.110)

from which we compute that
Threshold
energy for-
mulaE = Mc2 + 2mc2 +

m2

2M
c2 (5.111)

and this is finally the threshold energy of the proton for π0 production.
Note that the final state particles, when produced at this threshold energy, have a

common rest frame; but they are not at rest relative to the target proton in the laboratory
since, by three momentum conservation, they must have some three momentum because the
incident proton does.



CHAPTER VI

Relativity, optics and electromagnetism

§ 1. Stellar aberration

W
hen determining the position of stars stellar aberration is important. Stellar
aberration originates in the the fact that any fixed star observed from the Earth
is being observed from a moving object, and this must be taken into account

when using light from the star to deduce its position.

The underlying mechanism for stellar aberration is the same as that which makes rain
run diagonally down the window on the side of a moving train.

The path of
rain on a
train win-
doww

v

v+wθ

Fig. 17: The path of rain on a train window

Figure 17 shows rain running diagonally down the window of a train at an angle θ to the
vertical: the train is moving horizontally with velocity v and the rain is falling vertically
with velocity w; one sees that the angle θ is determined by the equation

tan(θ) =
v

w
,

{

v = |v|
w = |w| (6.1)

As can be seen from figure 17 this mechanism is simply the addition of velocities; how-
ever, since the relativistic velocity addition formula differs from the classical one, relativity
modifies this phenomenon.

We shall now explain that stellar aberration also results from the addition of velocities—
the two velocities being that of light and the orbital velocity of the Earth—so relativity will
modify the classical version of this result too.

When one views a fixed star from the Earth one is using a moving telescope: this means
that one has to tilt the telescope slightly to centre the star in the telescope. Figure 18 shows
two positions of a star according to whether the telescope moves relative to the star or not.
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=/image if v 0

image if v=0

θ

v

θ
Stellar aber-
rationFig. 18: A moving telescope viewing a star

The angular position of the star if the telescope is stationary is

θ (6.2)

and if the telescope moves it is

θ′ (6.3)

The stellar aberration, or simply the aberration, is the difference

θ − θ′ (6.4)

We now compute the aberration. As we said above it is a relative velocity phenomenon and
so we can calculate what we need from the velocity triangle shown in figure 19.

θ

θ)

v cos(θ)c 

sin(c 

θ

c 

Fig. 19: The Newtonian velocity diagram for stellar aberration
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The most convenient object to calculate from figure 19 is cot(θ′) and we find that

cot(θ′) =
c cos(θ) + v

c sin(θ)

=
cos(θ) + v

c

sin(θ)

(6.5)

So the classical, or non-relativistic, aberration formula is
Classical
stellar aber-
ration for-
mula

cot(θ′) =
cos(θ) + v

c

sin(θ)
(6.6)

However we can take advantage of the fact that, since v/c is small 1, cot(θ′) is very close to
cot(θ) and there is a useful approximate form of 6.6 which is very accurate. We now derive
this approximate form.

All that is needed is to apply Taylor’s theorem to cot(x); doing this we have

cot(x+ h) = cot(x) + h cot′(x)h+O(h2) (6.7)

Recall that

cot′(x) = − csc2(x) = − 1

sin2(x)
(6.8)

and set
x = θ, h = θ′ − θ (6.9)

Using this information 6.7 gives

cot(θ′) ≈ cot(θ) − θ′ − θ

sin2(θ)
(6.10)

and, substituting this into our aberration formula 6.6 we find that

cot(θ) − θ′ − θ

sin2(θ)
=

cos(θ) + v
c

sin(θ)

⇒ cot(θ) − θ′ − θ

sin2(θ)
= cot(θ) +

v

c

1

sin(θ)

(6.11)

which we write as Approximate
classical
aberration
formula

θ − θ′ =
v

c
sin(θ) (6.12)

and this—i.e. 6.12—is a well known formula in non-relativistic astronomy. Using the value
v/c = 9.92× 10−5 which we just quoted in our last footnote, and the fact that sin(θ) varies
at most between +1 and −1, we see that the aberration θ − θ′ does not exceed 2

2v

c
= 19.84 × 10−5 radians ≡ 40.92 seconds of arc (6.13)

1 Since v = 29.78 km/sec—cf. the footnote on p. 6—and c = 3 × 108 km/sec, the value of v/c is

9.92 × 10−5.
2 Recall that one second of arc is 1/3600 of a degree.
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a number which is indeed small, as claimed above.
We finish this section by giving the relativistic account of stellar aberration. Fortunately

this requires little extra work.
All we need to do is to use the fact that the classical formula followed from velocity

addition applied to the telescope and the light ray. More precisely, figure 19 shows that the
horizontal velocity components v (which was already horizontal) and c cos(θ) add together
to give

c cos(θ) + v (6.14)

and then one computes cos(θ′). Relativity has its own velocity addition formula for two
parallel velocities, namely

vrel =
v1 + v2
1 + v1v2

c2

(6.15)

so applying this we write

vrel =
c cos(θ) + v

1 + vc cos(θ)
c2

(6.16)

for the horizontal velocity component of the light ray in the moving frame; but this latter
is just

c cos(θ′) (6.17)

so we deduce that

c cos(θ′) =
c cos(θ) + v

1 + vc cos(θ)
c2

(6.18)

which we rewrite as
Relativistic
stellar aber-
ration for-
mula

cos(θ′) =
cos(θ) + v

c

1 + v
c cos(θ)

(6.19)

and this is the desired relativistic stellar aberration formula. We note that it does differ
from the classical one of 6.6.

As might be expected the classical and the relativistic formula agree for small v/c: in
fact they both reduce to the approximate form 6.12 for small v/c. One way of making this
really obvious is too rewrite the relativistic formula 6.19 as a formula for cot(θ′) rather
than for cos(θ′). We now do this. Evidently we just need sin(θ′) which we get by using
sin(x) =

√

1 − cos2(x). Hence we find that

sin(θ′) =

√

1 −
{

cos(θ) + v
c

1 + v
c cos(θ)

}2

=

√

√

√

√

1 + 2v
c cos(θ) + v2

c2 cos2(θ) − cos2(θ) − 2v
c cos(θ) − v2

c2

{

1 + v
c cos(θ)

}2

=

√

√

√

√

{1 − cos2(θ)} − v2

c2 {1 − cos2(θ)}
{

1 + v
c cos(θ)

}2 =
sin(θ)

√

1 − v2

c2

1 + v
c cos(θ)

(6.20)
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Now, combining 6.19 and 6.20, we get

cot(θ′) =
1

√

1 − v2

c2

{

cos(θ) + v
c

sin(θ)

}

(6.21)

or Alternative
version of
relativis-
tic stellar
aberration
formula

cot(θ′) = γ
cos(θ) + v

c

sin(θ)
, γ =

1
√

1 − v2

c2

, (relativistic formula) (6.22)

and the non-relativistic formula 6.6 was

cot(θ′) =
cos(θ) + v

c

sin(θ)
, (non-relativistic formula) (6.23)

We see that the relativistic one 6.22 only differs by the presence of the multiplicative factor
γ; thus to first order in v/c they will both agree and reduce to the same formula 6.12 as we
said above. This ends our discussion of stellar aberration.
§ 2. The Doppler effect
Suppose a wave be emitted by a source S and received by an observer O; we can then
distinguish two cases
(i) The source S and the observer O are both at rest
(ii) There is relative motion between the source S and the observer O.

The Doppler effect is the fact that the frequency measured by O is different in the two
cases.

If the wave is one of sound then this fact is familiar to most of us who have heard an
ambulance siren: its frequency rises, as it approaches us, and falls, as it moves away from
us; while if the ambulance is stationary the frequency is unchanged.

The Doppler effect also applies to light, and it is light waves which we wish to consider.
We shall find below that relativity modifies the classical calculation of the Doppler effect;
but it also predicts a new Doppler effect where there is none classically: this latter is called
the transverse Doppler effect.

It will turn out that time dilation is responsible for both the modification of the classical
result and the existence of the new transverse Doppler effect.

Consider now figure 20 which shows a light source S moving with constant velocity u
along the x axis of a frame F towards and observer O at the origin.

Doppler
effect for
S moving
horizontally
towards O

S

A light 

source S
uO

x

y

z

Fig. 20: S is moving with velocity u towards 0
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First we reason classically—that is ignoring special relativity. Let the frequency of the
light, as measured by S, be

ν (6.24)

then S measures each pulse to be t seconds apart, where t = 1/ν. But, during this time
interval t, S moves a distance ut nearer to O; and so the pulses they arrive earlier at O by
the amount ut/c seconds. Hence O measures the time between pulses to be tO where

tO = t− ut

c
=

(

1 − u

c

)

t (6.25)

Let νO be the frequency measured by O then νO = 1/tO so that

νO =
1

(

1 − u
c

)

t
(6.26)

Thus, remembering that t = 1/ν, we find that the frequencies ν measured by S and νO

measured by O are related by
The non-
relativistic
Doppler
effectνO =

1
(

1 − u
c

)ν, u > 0 (6.27)

This—i.e. equation 6.27—is the non-relativistic or classical Doppler effect.

We have assumed that u > 0: that is the source S is moving towards the observer O
and so we deduce that

νO > ν, u > 0 (6.28)

If S moves away from the observer O, then we change the sign of u in 6.27 giving

νO =
1

(

1 + u
c

)ν, u < 0 (6.29)

and so we will have

νO < ν, u < 0 (6.30)

This, of course, agrees with experiment and our experience with ambulance sirens.

Now we must take account of relativity; this is accomplished by simply including time
dilation in the above calculation.

When time dilation is included, the observer O measures these pulses as being t′O
seconds apart where t′O has acquired a factor of γ(u) = 1/

√

1 − u2/c2. Hence we have

t′O = γ(u)tO

=
tO

√

1 − u2

c2

(6.31)
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Hence, with relativity included, the frequency measured by O is ν′O where

ν′O =
1

t′O

=

√

1 − u2

c2

tO

⇒ ν′O =

√

1 − u2

c2
νO

(6.32)

Combining this with 6.27 we obtain the relativistic Doppler effect which is
The rel-
ativistic
Doppler
effectν′O =

√

1 − u2

c2

(

1 − u
c

) ν (6.33)

If we expand in powers of u/c we find that

ν′O =

(

1 − 1

2

u2

c2
+ · · ·

) (

1 +
u

c
+
u2

c2
+ · · ·

)

ν

=

(

1 +
u

c
+

1

2

u2

c2
+O

(

u3

c3

))

ν

(6.34)

and we see that the classical Doppler effect provides the correction (u/c)ν—the pure Doppler
term—while relativity provides the further correction (1/2)(u2/c2)ν, and corrections involv-
ing higher powers of u/c if numerically desired.

Note, too, that the relativity correction factor
√

1 − u2

c2 is independent of whether the

source S is moving towards or away from O as it is a function of u2 rather than u.

§ 3. The transverse Doppler effect

Thus far we have restricted the discussion to the case where the the light source S is moving
horizontally towards, or away from, the observer O. W now relax this restriction.

To this end let S emit a ray of light towards O but let S have velocity u, where the
angle between u and a line joining S to O is θ—cf. figure 21.

Doppler
effect for S
moving at
an angle θ
relative to
O

S θ
u

A light 

source S

O
x

y

z

Fig. 21: S is moving with velocity u at an angle θ relative to 0
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Provided we replace u by u cos(θ) in the pure Doppler factor (1 − u/c), and leave the
relativistic factor

√

1 − u2/c2 unchanged, the calculation of the Doppler effect goes through
exactly as before. 3

Hence our final, fully relativistic, formula is 4

Doppler
effect when
S moves at
an angle θ
relative to
O

ν′O =

√

1 − u2

c2

(

1 − u cos(θ)
c

)ν (6.37)

However when

θ =
π

2
(6.38)

the classical Doppler term switches off since we then have

(

1 − u cos(θ)

c

)

= 1, (θ = π
2 ) (6.39)

But we still see that

ν′O 6= ν (6.40)

for when θ = π/2 we have
The trans-
verse
Doppler
effectν′O =

√

1 − u2

c2
ν (6.41)

This is called the transverse Doppler effect and is a purely relativistic phenomenon.

3 The point is that what matters for the pure Doppler term is just the component of u in the direction

of O, and this is just u cos(θ); while for the relativistic term the factor
√

1 − u2/c2 just depends on the

magnitude u of u and this is independent of θ
4 Purely for the really interested we add the following. This angle θ is measured in the rest frame of O.

If one does not realise this then confusion can result. The formula 6.37 will change if one uses the angle—call
it θ′—measured in the rest frame of S. Using θ′, 6.37 is replaced by

ν′

O =

(

1 +
u cos(θ′)

c

)

√

1 − u2

c2

ν (6.35)

The two formulae are consistent and one can transform one into the other by using the fact that θ and θ′

are related by

cos(θ′) =
cos(θ) − u

c

1 − u
c

cos(θ)
(6.36)

a fact which follows from our stellar aberration formula 6.19 if you set v = −u.

In fact, if you look at p. 104 of Einstein’s 1905 paper, you will see that Einstein derives the relativistic

Doppler formula but obtains the other version of this formula, i.e. equation 6.35 of this footnote. In other

words Einstein measures the angle in the rest frame of the source, if you are looking at Einstein’s paper you

will see that he calls the angle φ, you need to know that this angle is π − θ′ in our notation.
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§ 4. Maxwell’s equations in relativistic notation

Maxwell’s equations for electric and magnetic fields are invariant under Lorentz transforma-
tions although we do not have the time to show that here. However we do intend to quote
the equations in a manifestly relativistic notation since this may be useful to the reader
elsewhere.

Let E and B denote electric and magnetic and fields respectively then recall that
Maxwell’s four equations are

Maxwell’s
equations

∇ · E =
ρ

ǫ0
∇ · B = 0

∇× E = −∂B
∂t

∇× B =
1

ǫ0c2
J +

1

c2
∂E

∂t

(6.42)

where J and ρ are the current density and charge density respectively.
Now introduce the scalar potential φ for E and the vector potential Ã for B. These

potentials obey the equations
The poten-
tials φ and

ÃE = −∇φ− ∂Ã

∂t
, or Ei = ∂iφ− ∂tÃi, i = 1, 2, 3

B = ∇× Ã, or















B1 = ∂2Ã3 − ∂3Ã2

B2 = ∂3Ã1 − ∂1Ã3

B3 = ∂1Ã2 − ∂2Ã1

(6.43)

It is important to realise that the introduction of these two potentials φ and Ã auto-
matically generates an E and a B which satisfy equations the second and third of Maxwell’s
four equations. To see this one just substitutes 6.43 into the second and third Maxwell
equations: doing this one computes that

∇ · B = ∇ · ∇ × Ã

= 0, as required
(6.44)

thus dealing with ∇ · B. While for ∇× E we have

∇× E = ∇× (−∇φ− ∂Ã

∂t
)

= 0 −∇× ∂Ã

∂t

= −∂(∇× Ã)

∂t

= −∂B
∂t
, as required

(6.45)
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So we have now polished off ∇× E.
The key relativistic step is to combine the potentials φ and Ã into a single four potential

Aµ whose definition is

Aµ = (
φ

c
, Ã) (6.46)

and so if we lower the index using
The four
potential Aµ

Aµ = gµνA
ν (6.47)

we get

Aµ = (
φ

c
,−Ã) (6.48)

or, spelling it out in full,

A0 =
φ

c

A1 = −Ã1

A2 = −Ã2

A3 = −Ã3

(6.49)

Finally define the tensor Fµν by writing
The tensor
Fµν

Fµν = ∂µAν − ∂νAµ (6.50)

where

∂µ =
∂

∂xµ
(6.51)

Notice that Fµν is antisymmetric in µ and ν so that we have

Fµν = −Fνµ (6.52)

It turns out that Fµν contains all the components of the electric and magnetic fields; for, if
we calculate Fµν , we find that (remember x0 = ct)

F0i = ∂0Ai − ∂iA0

⇒ F0i = −1

c
∂tÃi −

1

c
∂iφ

=
1

c
Ei

, valid for i=1,2,3 (6.53)

and
Fij = ∂iAj − ∂jAi

⇒ Fij = −∂iÃj + ∂jÃi

⇒







F12 = −B3

F31 = −B2

F23 = −B1

(6.54)
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This is enough information to write out Fµν as an antisymmetric 4 × 4 matrix which gives
us

The way
in which E
and B are
contained in
FµνFµν =







F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33







=









0 E1

c
E2

c
E3

c

−E1

c 0 −B3 B2

−E2

c B3 0 −B1

−E3

c −B2 B1 0









(6.55)

With all this in place, one combines ρ and J into the single four vector Jµ where

Jµ = (
ρ

ǫ0c
,

J

ǫ0c2
) (6.56)

and Maxwell’s remaining two equations take the compact form

∂µFµν = Jν (6.57)

Let us check these last two Maxwell equations: Setting ν = 0 in 6.57 we get for the LHS

∂µFµ0 = ∂0F00 − ∂iFi0, (the Minkowsi metric generated the minus sign in front of ∂iFi0)

= 0 + ∂i

(

Ei

c

)

, using 6.53

=
1

c
∇ · E

(6.58)
But the RHS of 6.57 with µ = 0 is

ρ

ǫ0c
(6.59)

so the ν = 0 part of 6.57 asserts that

∇ · E =
ρ

ǫ0
(6.60)

which is indeed Maxwell’s first equation.
Now setting ν = i, (remember the range of i is i = 1, 2, 3) on the LHS of 6.57 we obtain

∂µFµi = ∂0F0i − ∂jFji

=
1

c
∂t

(

Ei

c

)

− ∂jFji, using 6.53

=
1

c2

(

∂E

∂t

)

i

− (∇× B)i , using 6.54 and writing out ∂jFji carefully

(6.61)
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where the suffix i in the last line of 6.61 above denotes the ith component of the vector to
which it is applied. But now we see that the RHS of 6.57 with ν = i is just

Ji

ǫ0c2
(6.62)

so the ν = i part of 6.57 asserts that

∇× B =
1

ǫ0c2
J +

1

c2
∂E

∂t
(6.63)

which is correct.
In summary Maxwell’s four equations are all satisfied by the choice

Relativistic
formulation
of Maxwell’s
equations

Aµ = (
φ

c
,−Ã)

Fµν = ∂µAν − ∂νAµ

∂µFµν = Jν

(6.64)



CHAPTER VII

Experimental tests of relativity

§ 1. Time dilation and length contraction

T
he existence of time dilation is easily proved by measuring the lifetimes of unstable
particles. What one does is to select an unstable particle and measure its lifetime
in more than one frame and note that the results differ. A celebrated example of

this is provided by the decay of muons as we now explain.

§ 2. Muon decay and time dilation

Introducing
the muonA muon is an unstable particle of (rest) mass about 210 times that of an electron.

When it decays at rest its lifetime tL and half life t1/2 are measured to be 1

Lifetime
and half life
of a muontL = 2.19 × 10−6 seconds

t1/2 = 1.52 × 10−6 seconds
(7.2)

But very fast moving muons are available as in the upper atmosphere of the Earth where
they form part of the cosmic rays: i.e. the collection of particles and radiation of various
kinds which arrive continuously from outside the planet. Such muons have been observed
with speed v given by

v = 2.94 × 108 m/sec

⇒ v = 0.98c, taking c = 3 × 108 m/sec
(7.3)

We can immediately calculate that

γ(v) =
1

√

1 − v2

c2

= 5.02

(7.4)

1 We remind the reader that the lifetime and half life of unstable nuclei or unstable particles are always
related by the simple equation

t1/2 = ln(2)tL (7.1)

Hence we only need to know one of the two quantities tL and t1/2 and can use equation 7.1 to obtain the

other.
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Time dila-
tionHence, by time dilation, the lifetime of the fast muons measured by a ground based

observer should be
γ(v)tL (7.5)

which we find has the value Lifetime of
a fast muon
extended
by time
dilation

5.02 · 2.19 × 10−6 = 10.99 × 10−6 seconds (7.6)

So the muon should live about five times longer than it does when measured at rest: This
is what is found by experiments—cf. the papers quoted in the footnote on p. 74—and is a
striking confirmation of time dilation.

§ 3. Muon decay and length contraction

One can also regard this experiment as an indirect confirmation of length contraction as we
now explain below.

Let us go to the rest frame of the muon as it travels down towards the Earth’s surface.
Let an Earth based observer OEarth measure the muons at a height L above the Earth’s
surface where

L = 10 km (7.7)

and measure them again at the Earth’s surface.
Well, an observer Omuon, in the rest frame of the muon, will claim that the Earth has

moved, with velocity 2.94× 108 m/sec towards the muon a total distance not of 10 km, but
a distance of Length con-

traction
seen in the
muon rest
frame

L

γ(v)
=

10

5.02
km

= 1.99 km

(7.8)

Also Omuon will see no time dilation and will measure the muon lifetime tL to have the
normal value given by

tL = 2.19 × 10−6 seconds (7.9)

We summarise the situation by pointing out that

OEarth sees

{

Time dilation sending tL to γ(v)tL
No length contraction

Omuon sees

{

No time dilation

Length contraction sending L to
L

γ(v)

(7.10)

Both observers are happy that their measurements are entirely consistent; and we can make
this even more convincing by calculating the number of muon decays each observer sees.
Let us now do this.

§ 4. OEarth and Omuon measure the same number of muon decays

Suppose N muons begin travelling downwards at speed v, a distance L so as to reach
the Earth’s surface. Remember also that their population halves every half life number of
seconds.



72 Introduction to Relativity

Now observer OEarth says that the journey takes

L

v
seconds (7.11)

and OEarth, who also sees time dilation, says that the half life is γ(v)t1/2. So, dividing by
this half life, he says that the muon journey takes

L

vγ(v)t1/2
half lives = p say (7.12)

So he says that the number of muons has halved p times and is therefore now

N

2p
, where p =

L

vγ(v)t1/2
(7.13)

This means that the number of muons that have decayed should be
Number
of decays
measured by
OEarth

N − N

2p
, (p =

L

vγ(v)t1/2
) (7.14)

In contrast observer Omuon sees length contraction and claims that the distance trav-
elled by the Earth, at speed v, towards the muons is only

L

γ(v)
(7.15)

and so the time for the muons to touch the Earth surface is, he claims,

L

vγ(v)
(7.16)

Omuon sees no time dilation and asserts that the half life is just

t1/2 (7.17)

and so, on division by t1/2, he says that the Earth journey takes

L

vγ(v)t1/2
half lives = q say (7.18)

Thus Omuon says that the muon population is

N

2q
, where q =

L

vγ(v)t1/2
(7.19)

and so the number of decayed muons is
Number
of decays
measured by
Omuon

N − N

2q
, (q =

L

vγ(v)t1/2
) (7.20)
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But we observe that
OEarth

and Omuon

agree on the
number of
decays

p = q (7.21)

and so both observers will measure the same number of decays as indeed they should.

Do note, however, that this number of decays which is

N − N

2p
, with p =

L

vγ(v)t1/2
(7.22)

is very different from that predicted without special relativity because relativity inserts the
quantity γ(v) into the formula 7.22. Hence these measurements do constitute a striking
verification of a relativistic law—a verification which can be viewed as one of time dilation
if measured by OEarth; or length contraction if measured by Omuon.

§ 5. A worked example

We finish this muon discussion by putting in some numbers to show what happens. All we
have to do is to specify N since the values of the other quantities have already been quoted
above. Let us take

N = 1 million particles (7.23)

then the number of decays according to relativity is

106 − 106

2p
with p =

104

2.94 × 108 · 5.02 · 1.52 × 10−6
= 4.45

= 106

(

1 − 1

24.45

)

= 954, 247.32 decays

(7.24)

Relativity
says 45, 752
muons reach
the Earths’
surface

leaving 45, 752 surviving muons.

However, without relativity, the value of p would be

L

vt1/2
=

104

2.94 × 108 · 1.52 × 10−6

= 22.33

(7.25)

so that the number of decays N −N/2p becomes
Non-
relativistic
physics says
no muons
reach the
Earths’ sur-
face

106

(

1 − 1

222.33

)

= 999, 999.98 decays (7.26)

leaving 0.02 of a surviving muon—hence all the particles have decayed.
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Experiment
agrees with
relativity

Thus the predictions of relativity are vastly different and experiment 2 has decided in
favour of relativity.

§ 6. Gravitational time dilation

General relativity 3 predicts that a clock is slowed by being in a gravitational field: the
stronger the field the more the clock is slowed down. More precisely we have the following
formula.

If t0 the clock time with zero gravitational field and t the time in a gravitational field
then, for the Earth, the two clock times are related by the equation

t =
t0

√

1 − 2GM
Rc2







G = Newton’s constant = 6.672 × 10−11 m2kg−1s−2

R = distance of clock from centre of the Earth

M = mass of the Earth = 5.973 × 1024 kg
c = speed of light = 3 × 108 ms−1







(7.27)

The gravi-
tational red
shift

This phenomenon is also called the gravitational red shift because it means that the
frequencies of emitted radiation from atoms is shifted towards the red end of the spectrum
by the gravitational field. Knowledge of the gravitational red shift is vital for astronomers
when observing radiation from stars.

This gravitational effect is quite distinct from the time dilation of special relativity
which requires a moving clock; gravitational time dilation occurs for a clock at rest in a
gravitational field.

Gravitational effects due to general relativity are very small for the Earth when
compared with those of a star like the Sun—because of the Sun’s much greater mass—
nevertheless they have been experimentally confirmed. Here are some details.

Experiment The scout-D rocket experiment

In 1976 the Smithsonian Astrophysical laboratory sent a rocket to an altitude of 10, 000 km
and then allowed it to fall back to the Earth for two hours while simultaneously transmitting
pulses from a hydrogen maser to the surface. This maser oscillates at a frequency ν which
is accurate to 1 part in 1016; but ν should vary during the fall.

Also, bearing in mind that ν = t−1, then formula 7.27 shows us that the maser fre-
quencies ν and ν0, corresponding to t and t0, will obey the formula

ν

ν0
=

√

1 − 2GM

Rc2
(7.28)

2 If the reader is interested, experimental details can be found in the following two papers: Rossi B. and

Hall D. B., On muon time dilation, Phys. Rev. 59, 223–, (1941) and Bailey, J., Borer, K., Combley, F.,

Drumm H., Krienen F., Lange F., Picasso E., von Ruden W., Farley F. J. M., Field J. H., Flegel W., and

Hattersley P. M., Measurements of relativistic time dilation for positive and negative muons in a circular

orbit, Nature, 268, 301–305, (1977).
3 We do not require any previous knowledge of general relativity here; we just quote the formulae that

we need and the rest is surprisingly simple.
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If we denote the radius of the Earth by RE , and the altitude of the rocket by H, then
R = RE +H so that, at its highest point, the frequency is νH with

νH

ν0
=

√

1 − 2GM

Rc2
, with R = RE +H (7.29)

while, at the Earth’s surface, we set R = RE and the frequency is νS with

νS

ν0
=

√

1 − 2GM

REc2
(7.30)

Hence the frequency on the Earth’s surface and at an altitude H are related by the equation

νH

νS
=

√

1 − 2GM

(RE +H)c2
√

1 − 2GM

REc2

, with H = 10, 000 km (7.31)

But since

RE = 6.378 × 103 km = 6.378 × 106m, H = 10, 000 km = 107m (7.32)

so one easily computes that
A very suc-
cessful grav-
itational
time dila-
tion experi-
ment

νH

νS
= 1.000000000423 (7.33)

that is a shift of just 4.23 parts in 1010 in the maser frequency—in other words the maser
at height 10, 000 km has a slightly higher frequency than the one on the Earth’s surface.
This was very satisfactorily confirmed to within 0.01% by the experiment 4

Here is another famous gravitational red shift experiment.

Experiment The Harvard tower experiment

In the Harvard tower 5 experiment a frequency shift is observed and measured when the
source and receiver atoms are only 22.6 metres apart rather than 10, 000 kilometres. This
means that one uses the formula of 7.31 with H = 22.6m giving us

νH

νS
=

√

1 − 2GM

(RE +H)c2
√

1 − 2GM

REc2

, with H = 22.6m (7.34)

4 The results of the experiment are described in: Vessot R. F. C. and Levine M. W., A test of the

equivalence principle using a space-borne clock, J. Gen. Rel. and Grav., 10, 181–204, (1979).
5 The phrase Harvard tower and the height 22.6 metres are due to the fact that 22.6 metres was the

distance within an elevator shaft in the Jefferson Tower physics building in Harvard used for the experiment.
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and we find that
νH

νS
= 1.000000000000002460000 (7.35)

This is an incredibly small frequency shift of 2.46 parts in 1015 and it is truly amazing that
it is measurable. The measurement was made possible by using what is called the Mössbauer
effect. 6 The successful experiment, confirming general relativity to within 1%, was done in
1960 by Pound and Rebka. 7

Pound and
Rebka’s
successful
experiment

In the actual experiment a photon in the γ-ray region is emitted from a source crystal
at a height of 22.6m and allowed to fall in the Earth’s gravitational field to the target where
it should be absorbed via the Mössbauer mechanism if its frequency has not shifted. Pound
and Rebka made the source oscillate up and down—thus adding a large Doppler shift and
thereby periodically creating and destroying the conditions for absorption—they also had to
take account of temperature effects and differences between the source and target crystals.

§ 7. Combined special and general relativistic time dilation

If one takes a very accurate atomic clock and places it on an airplane flying above the
Earth’s surface then it should tick at a different rate to an identical Earth bound clock.
Moreover there are two sources for this rate difference: one special relativistic and one
general relativistic. These are simply
(i) The special relativistic time dilation given by the factor

1
√

1 − v2

c2

, where v is the horizontal speed of the airplane (7.36)

(ii)
Special and
general rel-
ativity both
at work

The general relativistic red shift time dilation due to the factor

√

1 − 2GM

(RE +H)c2
, where H is the altitude of the airplane (7.37)

Thus when such an airplane lands its clock should differ from the one of the ground by an
amount which is calculable from both general and special relativity. Such an experiment
was done by Haefele and Keating in 1971 and we now provide a brief description.

6 Some information about the the Mössbauer effect may be of interest to the curious reader. When an
atom of substance A, say, emits a γ-ray it recoils, thereby reducing somewhat the energy of the γ-ray; this
photon has therefore too low a frequency to be reabsorbed by another atom of substance A.

However, Mössbauer discovered, that if substance A is a crystal at a low enough temperature then any

recoil energy must be taken up by the whole crystal and, if the “would be recoil energy” is lower than the

lowest vibrational energy state (i.e. what is called the lowest phonon energy) of the crystal then it cannot

be taken up at all and no energy is lost to a recoil on photon emission. This means that reabsorption is

now possible and, when it occurs, it is called resonant absorption. This phenomenon is referred to as the

the Mössbauer effect.
7 The results are published in the following short, but very important, paper: Pound R. V. and Rebka

Jr. G. A.., Apparent weight of photons, Phys. Rev. Lett., 4, 337–341 (1960)



Experimental tests of relativity 77

Experiment The Haefele and Keating experiment

This experiment was done in 1971 and involved placing four Caesium atomic clocks on
a commercial jet airliner and flying it twice round the world: once eastwards and once
westwards. The clocks did differ from a ground based clock—the results 8 were roughly as
follows (all quoted times are in nanoseconds):

Eastward Journey Westward Journey
Kinematic (Special theory) −184 ± 18 +96 ± 18
Gravitational (General theory) +144 ± 14 +179 ± 18
Total predicted effect −40 ± 23 +275 ± 21
Total measured effect −59 ± 10 +273 ± 21

(7.38)

The twin
paradox
explanation
confirmed

Happily we see agreement between theory 9 and experiment within the experimental
errors. Note that this experiment constitutes a confirmation of our account of the twin
paradox given in chapter 4.

§ 8. Verification of E = mc2: nuclear power and stellar energy

The first experimental verification of the equation E = mc2 was by Cockroft and Walton
in 1932 when they split the lithium nucleus. 10

We now want to remind the reader of some basic matters relevant to atomic nuclei and
the understanding of the equation E = mc2.

If we take the nucleus of any stable atom then the mass of the nucleus is always less
than the sum of the masses of its individual protons and neutrons. This mass difference is
convertible into an energy using E = mc2, and this energy is called the binding energy of
the nucleus.

Here is an example.

Example The binding energy of Helium

Take the ordinary stable Helium nucleus 4He which consists of two protons and two
neutrons—this is also known as an α-particle. The mass of the 4He, nucleus is M where

M = 4.001506179u (7.39)

where u denotes what are called unified atomic mass units which are defined by

1u = 1.66053873 × 10−27 kg (7.40)

8 The reference for this work is: Haefele J. C. and Keating R. E., Around-the-world atomic clocks:

Predicted relativistic time gains, Science, 177, 166–170, (1972).
9 We do not show how to calculate the relativistic effects though this is quite easy; rather we conserve

our efforts till we come to the much more interesting subject of global positioning by satellites, or GPS (cf.

§ 9) where we do give the details.
10 Their work appeared in the paper: Cockroft J. D. and Walton E. T. S., Experiments with high velocity

positive ions II: the disintegration of elements by high velocity protons, Proc. Roy. Soc. London, A137,

229–, (1932). Walton was Irish and Cockroft English. Cockroft and Walton received the 1951 Nobel prize

for physics for this work.
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Now if mp and mn denote the masses of a single proton and neutron respectively then we
know that

mp = 1.007276466u, mn = 1.008664915u (7.41)

So the sum of the masses of the four nucleons of 4He is

2mp + 2mn = (2 · 1.007276466 + 2 · 1.008664915)u = 4.031882762u

But this is more than M the mass of 4He, the difference being ∆M—and known as the
mass defect—where

Binding
energy, E =
mc2 and
and the
mass defect

∆M = (4.031882762 − 4.001506179)u = 0.030376583u (7.42)

So the binding energy is now ∆E where

∆E = ∆Mc2 (7.43)

giving us, for 4He, a binding energy of

∆E = 0.030376583 × 1.66053873 × 10−27 × (3 × 108)2 J = 4.53597 × 10−12 J (7.44)

We have given ∆E above in Joules, but it is also common to use electron volts, which are
denoted by eV ; the relation between the two sets of units is that

1 eV = 1.60217 × 10−19 J (7.45)

It is also very useful to know that

1 eV/c2 = 1.7826 × 10−36 kg (7.46)

In any case, in electron volts, we find that the binding energy of 4He is given by

∆E =
4.53597 × 10−12

1.60217 × 10−19
eV = 2.8334 × 107 eV

or ∆E = 28.33Mev

(7.47)

where 1 Mev denotes 106 eV .
This binding energy ∆E is the energy that must be supplied to overcome the strong

nuclear forces and break it up into its four constituent nucleons.
Binding energy is the energy that gets released in nuclear fission and fusion via the

following mechanism. Let a nucleus have N nucleons and corresponding mass

MN (7.48)

If its binding energy is ∆E, then the binding energy per nucleon is

∆E

N
(7.49)
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The crucial point is that the binding energy per nucleon ∆E/N is not a constant but is a
function of N—cf. the sketch comprising figure 22.

Binding
energy per
nucleon not
constant

E/N∆

N

Fe

Number of nucleons 50

2

6

8

B
in

d
in

g
 e

n
e

r
g

y
 p

e
r
 n

u
c
le

o
n

Fission regionFusion region

240

Fig. 22: The binding energy per nucleon in the periodic table

Now if we take the nucleus of an element A and divide it into two pieces, then, depending
on where A is in the periodic table, the sum of masses of the two pieces may be bigger or
smaller than the mass of the nucleus of A.

In the smaller case an A nucleus can release energy by splitting up into the two pieces:
this is called nuclear fission, alternatively, if the bigger case pertains, then energy will be
released by joining two such pieces together to form an A nucleus: this is called nuclear
fusion.

In each case—fission or fusion—the final nucleus or nuclei have a higher binding energy
than the initial nucleus or nuclei. The net increase in energy ∆E is related to the mass
difference ∆m by

∆E = ∆mc2 (7.50)

∆E is then the energy released in the fission or fusion process.
We see a maximum in the graph at the element iron: 56Fe. What this means is that,

for the lighter elements, to the left of the dotted line in figure 22, one tends to have fusion;
while, for the heavier elements, to the right of the dotted line one tends to have fission.

Example A fission reaction
Uranium has an unstable radioactive isotope 235

92 U (mass 235.04392 u) which can undergo
fission when hit by a slow, or thermal, neutron. One has a reaction of the form

n+ 235
92 U −→ A+B + n+ n (7.51)

where n denotes a neutron and A and B are the two main fission fragments. There are many
possibilities for A and B but one example is where A = 90

37Rb (Rubidium, mass 89.914813
u) and B = 144

55 Cs (Caesium, mass 143.93202 u) giving
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A typical
Uranium
fission reac-
tion

n+ 235
92 U −→ 90

37Rb+ 144
55 Cs+ n+ n (7.52)

Remembering that the neutron mass is 1.008664915u the values for the total initial and
final state masses Minitial and Mfinal are

Minitial = 1.008664915 + 235.04392 = 236.0525849

Mfinal = 2 · 1.008664915 + 89.914813 + 143.93202 = 235.8641628
(7.53)

The mass difference ∆M = Minitial −Mfinal is thus given by 11

∆M = 236.0525849 − 235.8641628 = 0.190956 (7.54)

and so the fission energy release ∆M c2 is

0.190956 c2 (7.55)

and this is equal to
Fission en-
ergy yield

178.121MeV (7.56)

if we use the conversion information of 7.40 and 7.46; and we note that this is an energy
yield of 178.121/236 = 0.754MeV per nucleon.

Example A fusion reaction

If we take the two heavy hydrogen isotopes deuterium 2
1H (mass 2.0141017 u) and tritium

3
1H (mass 3.0160293 u) then they can combine in a fusion reaction giving helium 4

2He (mass
4.0026032 u) plus a neutron. Thus we have

A fusion
reaction
favoured
by fusion
reactor de-
signers

2
1H + 3

1H −→ 4
2He+ n (7.57)

and for Minitial and Mfinal we find 12

Minitial = 2.0141017 + 3.0160293 = 5.030131

Mfinal = 4.0026032 + 1.008664915 = 5.0112681
(7.58)

Thus for ∆M = Minitial −Mfinal we find

∆M = 0.0188629 (7.59)

11 Note that the masses I am using here for Uranium, Caesium and Rubidium are not the masses of

the respective nuclei but the atomic masses—i.e. the electron masses are included. This would matter

were it not for the fact that the electron masses exactly cancel in the difference ∆M—thus the calculation

of the energy yield is indeed correct despite the fact that Minitial and Mfinal should really have been

the nuclear masses. The reason for using atomic masses in the first place is because they are much more

readily accessible than nuclear masses: recall that they are the ones that are quoted in periodic tables of

the elements.
12 Again we are using atomic masses instead of nuclear masses here but this does not matter, cf. the

footnote to the previous example.
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giving a fusion energy release of
0.0188629 c2 (7.60)

which, in MeV , is
Fusion en-
ergy yield

17.595MeV (7.61)

and this is an energy yield of 17.95/5 = 3.5MeV per nucleon—i.e. considerably bigger than
the fission yield quoted above. The above reaction is one favoured by the designers of fusion
reactors which may be realised in the future.

We provide one more example for those interested in astrophysics.

Example Stellar fusion

There are three main stellar fusion processes that fuel the stars depending on the age A,
core temperature T and mass M : the proton-proton cycle (T < 106K), the carbon cycle
(larger M and T > 106K) and the helium cycle (larger A, centre collapsing and T > 108K).

In brief the proton-proton cycle looks like this (e+ denotes a positron and νe an electron-
neutrino):

The stel-
lar proton-
proton fu-
sion reac-
tion

1
1H + 1

1H −→ 2
1H + e+ + νe

2
1H + 1

1H −→ 3
2He

3
2He+ 3

2He −→ 4
2He+ 1

1H + 1
1H, (energy yield about 25MeV )

(7.62)

§ 9. Global positioning by satellites: GPS

The GPS system consists of the use of 24 satellites to obtain the position of objects on, or
above, the Earth. The position of the object—a person, a ship, a building etc—is a three
dimensional position i.e. height as well as latitude and longitude are given; it is also very
accurate indeed yielding positions to within an error of only several metres.

The 24 satellites are divided into six groups of four and each satellite contains a Caesium
atomic clock whose accuracy must be at least as good as 1 nanosecond per second. Each
group of four lie in a common orbital plane and the six orbital planes are all at 550 to the
Earth’s equator. Finally the orbital period of each satellite is 12 hours which determines 13

its distance from the centre of the Earth to be 26608 km—we assume a circular orbit for
simplicity which is a fair assumption, but see our remarks on p. 83 for details on what
happens without this assumption.

These 24 satellites give global coverage so that a receiver on or near the surface can
always communicate with about four satellites. These four satellites continually transmit

13 This distance is computed from Kepler’s third law which says that the orbital period T and the radius
of the orbit R are related by the equation

R =

(

GMT 2

4π2

)1/3

(7.63)

where G is Newton’s constant and M is the mass of the Earth; their values are given in 7.27.
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their position and their time and allow the receiver to deduce its own position to a great
accuracy.

Both special and general relativistic effects are large, and their inclusion is crucial to
obtaining the correct receiver positions. We now calculate both of these relativistic effects
and show just how important 14 they are.

The special relativistic effect comes from the factor

1
√

1 − v2

c2

, where v is speed of the satellite (7.64)

Now if ω is the satellite’s angular velocity then

ω =
2π

12
rads per hour ≡ 1.45 × 10−4rads per sec (7.65)

and since v = Rω we compute that

v = 26.608 × 106 · 1.45 × 10−4m/sec

= 3858.16m/sec
(7.66)

Hence we find that
1

√

1 − v2

c2

=
1

√

1 − (3858.16)2

(3×108)2

= 1.00000000008269

(7.67)

This represents a change of 0.82 parts in 1010 and, a moving clock ticks slow, so the satellite
clock must be corrected upwards by

Special rel-
ativistic
correction0.082 nanoseconds per second (7.68)

Thus, over a whole day, the clock would be wrong by

24 · 3600 · 0.082 × 10−9 = 7.08 × 10−6 secs (7.69)

So much for the correction due to special relativity.
Now, coming to general relativity, we know that the clock will tick faster in the satellite

due to the weaker gravitational field at 26608 km from the Earth’s centre. Thus the general
relativistic correction is opposite to the special relativistic one. The correction is given, as
we saw in 7.31 by the quantity

General
relativistic
correction

14 One should also take into account the fact that the Earth is rotating and so a surface clock is in a

rotating frame; this does affect matters and is known as the Sagnac effect but it is numerically small and,

though we shall not include it here, it is included in a full treatment of the GPS corrections.
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√

1 − 2GM

Rc2
√

1 − 2GM

REc2

, with R = 2.6608 × 106

= 1.0000000005278

(7.70)

and this is a change of 5.27 parts in 1010 which we note is about 6.4 times bigger than the
special relativistic correction. Also, over a whole day, this effect would make the clock be
fast by

24 · 3600 · 5.27 × 10−10 = 45.6 × 10−6 secs (7.71)

Finally the total effect on the satellite clock in a day, if uncorrected, would be

(−7.08 + 45.6) × 10−6 = 38.52 × 10−6 secs (7.72)

Hence the satellite clock must be corrected to run slower by
Combined
special and
general rel-
ativistic
correction

(−0.82 + 5.27) × 10−10 = 4.45 × 10−10 seconds per second

= 0.445 nanoseconds per second
(7.73)

which is the same as 38.52 × 10−6 secs per day.

Note that the consequence of not applying this correction would be disastrous: for
example, if left uncorrected for a whole day, the clock would be out by

38.52 × 10−6 secs (7.74)

but the speed of light is 3 × 108m/sec and so, in 38.52 × 10−6 secs, light travels

3 × 108 · 38.52 × 10−6 = 11556m (7.75)

and so a position determination would be out by
Possible
position er-
ror without
relativity

11556 metres ≡ 11.55 km (7.76)

a quite unacceptable amount, rendering the whole GPS scheme useless.
Non cir-
cularity of
satellite or-
bits a small
matter

We now comment, as promised, on what happens if one takes account of the fact that
the GPS satellite orbits are not circular. The GPS satellite orbits, though not all the same
shape, are all close to being circular, their eccentricity is about 0.01 or less. However the
fact that they are not exactly circular means that the distance of the satellites from the
centre the Earth varies slightly over a single orbit. This causes a periodic change in clock
rate whose size, for an eccentricity of 0.01, is about 23 nanoseconds over a 12 hour orbit.
This can be taken account of fairly easily. We note that 23 nanoseconds is nothing like the
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size of the corrections that have to applied because of relativity over a 12 hour period which
are three orders of magnitude bigger. 15

GPS re-
ceivers:
inexpensive
verifiers
of special
and general
relativity

Nowadays handheld GPS receivers cost as little as e 200 and they are used for naviga-
tion on airliners and ships, as well as by climbers, hill walkers and for many other purposes;
they can even estimate speed of movement as well as three dimensional position.

When the first satellites were launched in 1977 some people doubted the necessity
for relativistic corrections but these doubts were very quickly dispelled. Thus we can say,
without any exaggeration, that GPS receivers are a very useful, commonplace and cheap
device in which incorporation of both special and general relativity are essential to their
operation.

§ 10. Bending of light by a gravitational field

Light bends
in gravita-
tional field

Relativity predicts that light bends in a gravitational field. This famous prediction of
relativity was confirmed in 1919 during a famous expedition to photograph a total eclipse
of the sun. The amount of the bending is small, but it was measured for light, originating
in a certain star, and passing close to the Sun. The amount of the bending was found to be
precisely as predicted by Einstein and caused quite a sensation in the public and scientific
world of the time. The figure below shows the bending; the size θ of the deflection is about
1.75 seconds of arc.

15 If one sticks to the circularity approximation then one can obtain quite a neat formula for the combined
special and general relativistic corrections as follows: Using 7.64 and 7.70 we see that the correction we have
calculated in 7.73 above is given by the combined formula

√

1 − v2

c2

√

1 − 2GM

Rc2
√

1 − 2GM

REc2

(7.77)

But we know that, for a circular orbit, T = 2π/ω and so Kepler’s formula 7.63 tells us that

R3 =
GM

ω2
(7.78)

and since v = Rω we have

v2 =
GM

R
(7.79)

giving
√

1 − v2/c2 =
√

1 − GM/Rc2. Hence our combined formula 7.77 becomes the rather neat expression

√

1 − GM

Rc2

√

1 − 2GM

Rc2
√

1 − 2GM

REc2

(7.80)
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Fig. 23: The bending of starlight by the Sun

This was an early but very important experimental success for general relativity as it
was a prediction and no one had ever thought that such a thing could happen before.

§ 11. Advance of the perihelion of Mercury

Before the advent of general relativity the orbit of the planet mercury—the nearest planet
to the Sun—had been a puzzle to scientists for some considerable time. Newtonian gravity
could not explain it properly. The elliptical orbit of mercury rotates very, very slowly as it
goes round the Sun; this is shown in figure 24 below.

Sun

Mercury

θ

Fig. 24: The orbit of Mercury around the Sun
Relativity
successfully
predicts
the size of
Mercury’s
perihelion
advance

This phenomenon is referred to as the advance of the perihelion of mercury and it is
measured by the angle θ shown in figure 24. The measured value of θ, which is accurately
known, is about 5750 seconds of arc per century.

Newtonian gravity predicts such an advance of the perihelion—the advance being
caused by the gravitational fields of neighbouring planets—but the value of θ obtained
by the Newtonian calculation is only about 5707 seconds of arc; and this is therefore 43
seconds of arc too small.

Relativity successfully predicts the extra 43 seconds of arc for the perihelion advance
that Newtonian gravity failed to do; this was one of the earliest experimental successes of
general relativity.
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§ 12. Gravitational radiation

Relativity
predicts
gravitational
radiation

The photon is a zero rest mass object which is the quantum of electromagnetic radiation.
Physicists also believe that there is a gravitational analogue of the photon called the graviton;
the graviton also has zero rest mass and is the quantum of gravitational radiation. General
relativity predicts the existence of gravitational radiation; indeed gravitational radiation
should be emitted from an accelerating mass in the same way as electromagnetic radiation
is emitted from an accelerating charged particle. So a successful experimental measurement
of such radiation would be another experimental confirmation of relativity.

Unfortunately, while the photon and electromagnetic radiation do exist and are easily
measured, the existence of gravitons and gravitational radiation has not yet been confirmed
experimentally.

Gravitons,
quantum
gravity,
string the-
ory and M
theory

A proper discussion of gravitons requires a quantum theory of gravity; such a theory is
still under construction but may finally emerge from what is called string theory or a related
theory called M theory; however we must now leave the subject because it is so far outside
the scope of our current discussion.

However, returning to gravitational radiation we want to show that its existence is
strongly supported by very striking indirect astronomical evidence. This evidence is pro-
vided by measurements of the orbits of a binary pulsar by Hulse and Taylor.

Pulsars and
neutron
stars

We now give a brief account of their work. A pulsar is a rotating neutron star. The
neutron star 16, which is also very strongly magnetised, has a magnetic axis that does not
coincide with its rotational axis. Nearby electrons get magnetically trapped and spiral in
the magnetic field thereby emitting radiation along the direction of magnetic axis cf. figure
25

Fig. 25: A pulsar and its radio beacon

16 A neutron star is a collapsed star which is too light to have collapsed to form a black hole (for black

holes cf. § 13) but which has all its electrons and protons crushed together by its strong gravitational field

so that is consists entirely of neutrons.
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This fact, together with its rotation, causes the neutron star to emit a beam of electro-
magnetic radiation which sweeps around in a circular manner similar to a lighthouse beacon.
This radiation can be detected on Earth as a pulse whose frequency determined by the rate
of rotation of the neutron star—hence the name pulsar.

The frequency of these pulses can be constant to an enormously high accuracy and
some pulsars have a companion star so that the pair orbit round their common centre of
mass. Such a pulsar is called a binary pulsar and this is the type we are concerned with
here.

Hulse and Taylor detected a pulsar in 1974—usually referred to as PSR1913 + 16—
which they deduced was a binary pulsar by a variation in its pulse frequency caused by its
common orbiting of the companion star. The orbital period of about 7.75 hours could also
be deduced.

Orbital
slowing
caused by
emission of
gravitational
radiation

The pulsar PSR1913 + 16 was kept (and is still kept) under continuous observation
and its orbital period was found to be slowing at the rate of about 76 × 10−6 sec per year.
General relativity predicts that such a slowing—which also means that the orbit is shrinking
in size—would occur due to the loss of energy 17 from the binary system due to gravitational
radiation. Furthermore relativity predicts very precisely the amount of slowing and this is
in very good agreement indeed with the experimentally measured amount. Figure 26 shows
a picture of the binary system.

Fig. 26: The binary pulsar PSR1913+16

Hulse and Taylor were awarded the 1993 physics Nobel prize for this work which is
regarded as excellent indirect evidence for the existence of gravitational radiation and of
course provides yet another piece of experimental evidence for the correctness of general
relativity.

17 Given enough time—about 350 million years in this case—the orbit will have shrunk so much that the

two stars should coalesce.
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The LIGO
gravitational
radiation
detection
project

Direct observation of gravitational radiation may be possible with a special laser in-
terferometry experiment involving lasers thousands of kilometres apart; one such planned
experiment is called LIGO which stands for Laser Interferometry Gravitational Wave Ob-
servatory.

§ 13. Cosmology, the big bang and black holes

Black holes
General relativity also predicts that some stars may collapse to form what are called

black holes. Black holes have very intriguing properties such as their event horizon: a
mathematical surface surrounding the black hole which if crossed from the outside can
never be recrossed thus trapping the object that did the crossing. Also nothing inside the
event horizon—whether it was there when the black hole formed or came in afterwards—can
ever get out not even light. The gravitational field is also singular at the centre of the black
hole.

Black holes
contain a
singularity

Here is a brief sketch of some of the salient features of gravitational collapse.
Gravitational collapse is something that is worth investigating for very massive objects

such as stars. This simple sounding idea is that, for a sufficiently massive body, the attractive
force of gravity may be strong enough to cause it to start to implode.

To find something massive enough we have to choose a stellar object such as a star.
Now, for a young active star, the burning of the nuclear fuel causes enough outward pressure
to counteract all its gravitational inward pressure. However, since the nuclear fuel will
eventually be used up this line of thought suggests that one calculate what gravity can do
once it is not opposed by the nuclear reactions.

Black hole
formationWhen a large star has used up all its nuclear fuel it explodes into a supernova. The

remains after the supernova explosion then collapse down to form the extremely dense object
that is a neutron star. However if the massM of these remains is bigger than about twice the
mass of our Sun the collapse does not stop at the neutron star stage—nothing can overcome
the gravitational forces—and a black hole is formed.

Evidence for
black holesExperimental evidence is accumulating very much in favour of some astronomical ob-

jects being black holes; candidates include certain X-rays sources such as Cygnus X-1, whose
X rays are thought to be emitted by matter falling into a black hole; and incredibly massive
objects weighing as much as 1.2× 109 solar masses but occupying a volume only the size of
our solar system—an example, found by the Hubble space telescope, being the core of galaxy
NGC4261 which is thought to be too dense to be anything other than a black hole.

The big
bangThe entire present day Universe may have originated in a past singularity known as

the big bang; a possibility for which there is considerable experimental evidence nowadays.
This has resulted in the big bang being taken very seriously.

Both the big bang and black holes are natural products of general relativity; and so
the mounting experimental evidence for them is yet more experimental evidence for general
relativity.



CHAPTER VIII

Einstein’s two papers of 1905

§ 1. Einstein’s first 1905 paper

I
n this section we provide an English translation of Einstein’s original pa-
per which appeared in German, the precise German reference being: Zur
Elektrodynamik bewegter Körper (On the electrodynamics of moving bodies),

Annalen der Physik, 322, 891–921, (1905).

ON THE ELECTRODYNAMICS OF MOVING

BODIES

By A. EINSTEIN

June 30, 1905

It is known that Maxwell’s electrodynamics—as usually understood at the
present time—when applied to moving bodies, leads to asymmetries which do
not appear to be inherent in the phenomena. Take, for example, the recipro-
cal electrodynamic action of a magnet and a conductor. The observable phe-
nomenon here depends only on the relative motion of the conductor and the
magnet, whereas the customary view draws a sharp distinction between the two
cases in which either the one or the other of these bodies is in motion. For if the
magnet is in motion and the conductor at rest, there arises in the neighbour-
hood of the magnet an electric field with a certain definite energy, producing
a current at the places where parts of the conductor are situated. But if the
magnet is stationary and the conductor in motion, no electric field arises in the
neighbourhood of the magnet. In the conductor, however, we find an electro-
motive force, to which in itself there is no corresponding energy, but which gives
rise—assuming equality of relative motion in the two cases discussed—to elec-
tric currents of the same path and intensity as those produced by the electric
forces in the former case.
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Examples of this sort, together with the unsuccessful attempts to discover
any motion of the earth relatively to the “light medium,” suggest that the
phenomena of electrodynamics as well as of mechanics possess no properties
corresponding to the idea of absolute rest. They suggest rather that, as has
already been shown to the first order of small quantities, the same laws of
electrodynamics and optics will be valid for all frames of reference for which the
equations of mechanics hold good. 1 We will raise this conjecture (the purport
of which will hereafter be called the “Principle of Relativity”) to the status
of a postulate, and also introduce another postulate, which is only apparently
irreconcilable with the former, namely, that light is always propagated in empty
space with a definite velocity c which is independent of the state of motion of the
emitting body. These two postulates suffice for the attainment of a simple and
consistent theory of the electrodynamics of moving bodies based on Maxwell’s
theory for stationary bodies. The introduction of a “luminiferous ether” will
prove to be superfluous inasmuch as the view here to be developed will not
require an “absolutely stationary space” provided with special properties, nor
assign a velocity-vector to a point of the empty space in which electromagnetic
processes take place.

The theory to be developed is based—like all electrodynamics—on the kine-
matics of the rigid body, since the assertions of any such theory have to do
with the relationships between rigid bodies (systems of co-ordinates), clocks,
and electromagnetic processes. Insufficient consideration of this circumstance
lies at the root of the difficulties which the electrodynamics of moving bodies
at present encounters.

I. KINEMATICAL PART

§ 1. Definition of Simultaneity

Let us take a system of co-ordinates in which the equations of Newtonian
mechanics hold good. 2 In order to render our presentation more precise and
to distinguish this system of co-ordinates verbally from others which will be
introduced hereafter, we call it the “stationary system.”

If a material point is at rest relatively to this system of co-ordinates, its
position can be defined relatively thereto by the employment of rigid standards
of measurement and the methods of Euclidean geometry, and can be expressed
in Cartesian co-ordinates.

If we wish to describe the motion of a material point, we give the values of
its co-ordinates as functions of the time. Now we must bear carefully in mind
that a mathematical description of this kind has no physical meaning unless
we are quite clear as to what we understand by “time.” We have to take into
account that all our judgments in which time plays a part are always judgments
of simultaneous events. If, for instance, I say, “That train arrives here at 7

1 The preceding memoir by Lorentz was not at this time known to the author.
2 i.e. to the first approximation.
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o’clock,” I mean something like this: “The pointing of the small hand of my
watch to 7 and the arrival of the train are simultaneous events.” 3

It might appear possible to overcome all the difficulties attending the defini-
tion of “time” by substituting “the position of the small hand of my watch” for
“time.” And in fact such a definition is satisfactory when we are concerned with
defining a time exclusively for the place where the watch is located; but it is no
longer satisfactory when we have to connect in time series of events occurring
at different places, or—what comes to the same thing—to evaluate the times of
events occurring at places remote from the watch.

We might, of course, content ourselves with time values determined by an
observer stationed together with the watch at the origin of the co-ordinates,
and co-ordinating the corresponding positions of the hands with light signals,
given out by every event to be timed, and reaching him through empty space.
But this co-ordination has the disadvantage that it is not independent of the
standpoint of the observer with the watch or clock, as we know from experience.
We arrive at a much more practical determination along the following line of
thought.

If at the point A of space there is a clock, an observer at A can determine the
time values of events in the immediate proximity of A by finding the positions
of the hands which are simultaneous with these events. If there is at the point B
of space another clock in all respects resembling the one at A, it is possible for
an observer at B to determine the time values of events in the immediate neigh-
bourhood of B. But it is not possible without further assumption to compare,
in respect of time, an event at A with an event at B. We have so far defined
only an “A time” and a “B time.” We have not defined a common “time” for
A and B, for the latter cannot be defined at all unless we establish by definition
that the “time” required by light to travel from A to B equals the “time” it
requires to travel from B to A. Let a ray of light start at the “A time” tA from
A towards B, let it at the “B time” tB be reflected at B in the direction of A,
and arrive again at A at the “A time” t′A.

In accordance with definition the two clocks synchronize if

tB − tA = t′A − tB.

We assume that this definition of synchronism is free from contradictions,
and possible for any number of points; and that the following relations are
universally valid:—

1. If the clock at B synchronizes with the clock at A, the clock at A syn-
chronizes with the clock at B.

2. If the clock at A synchronizes with the clock at B and also with the clock
at C, the clocks at B and C also synchronize with each other.

Thus with the help of certain imaginary physical experiments we have set-
tled what is to be understood by synchronous stationary clocks located at dif-
ferent places, and have evidently obtained a definition of “simultaneous,” or

3 We shall not here discuss the inexactitude which lurks in the concept of simultaneity of

two events at approximately the same place, which can only be removed by an abstraction.
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“synchronous,” and of “time.” The “time” of an event is that which is given
simultaneously with the event by a stationary clock located at the place of
the event, this clock being synchronous, and indeed synchronous for all time
determinations, with a specified stationary clock.

In agreement with experience we further assume the quantity

2AB

t′A − tA
= c,

to be a universal constant—the velocity of light in empty space.

It is essential to have time defined by means of stationary clocks in the
stationary system, and the time now defined being appropriate to the stationary
system we call it “the time of the stationary system.”

§ 2. On the Relativity of Lengths and Times

The following reflexions are based on the principle of relativity and on the
principle of the constancy of the velocity of light. These two principles we define
as follows:—

1. The laws by which the states of physical systems undergo change are not
affected, whether these changes of state be referred to the one or the other of
two systems of co-ordinates in uniform translatory motion.

2. Any ray of light moves in the “stationary” system of co-ordinates with
the determined velocity c, whether the ray be emitted by a stationary or by a
moving body. Hence

velocity =
light path

time interval

where time interval is to be taken in the sense of the definition in § 1.

Let there be given a stationary rigid rod; and let its length be l as measured
by a measuring-rod which is also stationary. We now imagine the axis of the
rod lying along the axis of x of the stationary system of co-ordinates, and that
a uniform motion of parallel translation with velocity v along the axis of x in
the direction of increasing x is then imparted to the rod. We now inquire as to
the length of the moving rod, and imagine its length to be ascertained by the
following two operations:—

(a) The observer moves together with the given measuring-rod and the rod
to be measured, and measures the length of the rod directly by superposing the
measuring-rod, in just the same way as if all three were at rest.

(b) By means of stationary clocks set up in the stationary system and syn-
chronizing in accordance with § 1, the observer ascertains at what points of the
stationary system the two ends of the rod to be measured are located at a definite
time. The distance between these two points, measured by the measuring-rod
already employed, which in this case is at rest, is also a length which may be
designated “the length of the rod.”
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In accordance with the principle of relativity the length to be discovered by
the operation (a)—we will call it “the length of the rod in the moving system”—
must be equal to the length l of the stationary rod.

The length to be discovered by the operation (b) we will call “the length
of the (moving) rod in the stationary system.” This we shall determine on the
basis of our two principles, and we shall find that it differs from l.

Current kinematics tacitly assumes that the lengths determined by these two
operations are precisely equal, or in other words, that a moving rigid body at
the epoch t may in geometrical respects be perfectly represented by the same
body at rest in a definite position.

We imagine further that at the two ends A and B of the rod, clocks are
placed which synchronize with the clocks of the stationary system, that is to say
that their indications correspond at any instant to the “time of the stationary
system” at the places where they happen to be. These clocks are therefore
“synchronous in the stationary system.”

We imagine further that with each clock there is a moving observer, and
that these observers apply to both clocks the criterion established in § 1 for the
synchronization of two clocks. Let a ray of light depart from A at the time 4 tA,
let it be reflected at B at the time tB, and reach A again at the time t′A. Taking
into consideration the principle of the constancy of the velocity of light we find
that

tB − tA =
rAB

c− v
and t′A − tB =

rAB

c+ v

where rAB denotes the length of the moving rod—measured in the stationary
system. Observers moving with the moving rod would thus find that the two
clocks were not synchronous, while observers in the stationary system would
declare the clocks to be synchronous.

So we see that we cannot attach any absolute signification to the concept of
simultaneity, but that two events which, viewed from a system of co-ordinates,
are simultaneous, can no longer be looked upon as simultaneous events when
envisaged from a system which is in motion relatively to that system.

§ 3. Theory of the Transformation of Co-ordinates and
Times from a Stationary System to another System in
Uniform Motion of Translation Relatively to the Former

Let us in “stationary” space take two systems of co-ordinates, i.e. two sys-
tems, each of three rigid material lines, perpendicular to one another, and issuing
from a point. Let the axes of X of the two systems coincide, and their axes of
Y and Z respectively be parallel. Let each system be provided with a rigid
measuring-rod and a number of clocks, and let the two measuring-rods, and
likewise all the clocks of the two systems, be in all respects alike.

4 “Time” here denotes “time of the stationary system” and also “position of hands of the

moving clock situated at the place under discussion.”
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Now to the origin of one of the two systems (k) let a constant velocity v
be imparted in the direction of the increasing x of the other stationary system
(K), and let this velocity be communicated to the axes of the co-ordinates, the
relevant measuring-rod, and the clocks. To any time of the stationary system K
there then will correspond a definite position of the axes of the moving system,
and from reasons of symmetry we are entitled to assume that the motion of k
may be such that the axes of the moving system are at the time t (this “t” always
denotes a time of the stationary system) parallel to the axes of the stationary
system.

We now imagine space to be measured from the stationary system K by
means of the stationary measuring-rod, and also from the moving system k
by means of the measuring-rod moving with it; and that we thus obtain the
co-ordinates x, y, z, and ξ, η, ζ respectively. Further, let the time t of the
stationary system be determined for all points thereof at which there are clocks
by means of light signals in the manner indicated in § 1; similarly let the time
τ of the moving system be determined for all points of the moving system at
which there are clocks at rest relatively to that system by applying the method,
given in § 1, of light signals between the points at which the latter clocks are
located.

To any system of values x, y, z, t, which completely defines the place and
time of an event in the stationary system, there belongs a system of values ξ,
η, ζ τ , determining that event relatively to the system k, and our task is now
to find the system of equations connecting these quantities.

In the first place it is clear that the equations must be linear on account of
the properties of homogeneity which we attribute to space and time.

If we place x′ = x− vt, it is clear that a point at rest in the system k must
have a system of values x′, y, z, independent of time. We first define τ as a
function of x′, y, z, and t. To do this we have to express in equations that τ is
nothing else than the summary of the data of clocks at rest in system k, which
have been synchronized according to the rule given in § 1.

From the origin of system k let a ray be emitted at the time τ0 along the
X-axis to x′, and at the time τ1 be reflected thence to the origin of the co-
ordinates, arriving there at the time τ2; we then must have 1

2 (τ0 + τ2) = τ1, or,
by inserting the arguments of the function τ and applying the principle of the
constancy of the velocity of light in the stationary system:—

1

2

[

τ(0, 0, 0, t) + τ

(

0, 0, 0, t+
x′

c− v
+

x′

c+ v

)]

= τ

(

x′, 0, 0, t+
x′

c− v

)

.

Hence, if x′ be chosen infinitesimally small,

1

2

(

1

c− v
+

1

c+ v

)

∂τ

∂t
=

∂τ

∂x′
+

1

c− v

∂τ

∂t
,

or
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∂τ

∂x′
+

v

c2 − v2

∂τ

∂t
= 0.

It is to be noted that instead of the origin of the co-ordinates we might have
chosen any other point for the point of origin of the ray, and the equation just
obtained is therefore valid for all values of x′, y, z.

An analogous consideration—applied to the axes of Y and Z—it being borne
in mind that light is always propagated along these axes, when viewed from the
stationary system, with the velocity

√
c2 − v2 gives us

∂τ

∂y
= 0,

∂τ

∂z
= 0.

Since τ is a linear function, it follows from these equations that

τ = a

(

t− v

c2 − v2
x′

)

where a is a function φ(v) at present unknown, and where for brevity it is
assumed that at the origin of k, τ = 0, when t = 0.

With the help of this result we easily determine the quantities ξ, η, ζ by
expressing in equations that light (as required by the principle of the constancy
of the velocity of light, in combination with the principle of relativity) is also
propagated with velocity c when measured in the moving system. For a ray of
light emitted at the time τ = 0 in the direction of the increasing ξ

ξ = cτ or ξ = ac

(

t− v

c2 − v2
x′

)

.

But the ray moves relatively to the initial point of k, when measured in the
stationary system, with the velocity c− v, so that

x′

c− v
= t.

If we insert this value of t in the equation for ξ, we obtain

ξ = a
c2

c2 − v2
x′.

In an analogous manner we find, by considering rays moving along the two other
axes, that

η = cτ = ac

(

t− v

c2 − v2
x′

)

when

y√
c2 − v2

= t, x′ = 0.
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Thus

η = a
c√

c2 − v2
y and ζ = a

c√
c2 − v2

z.

Substituting for x′ its value, we obtain

τ = φ(v)β(t− vx/c2),

ξ = φ(v)β(t− vt),

η = φ(v)y,

ζ = φ(v)z,

where

β =
1

√

1 − v2/c2
,

and φ is an as yet unknown function of v. If no assumption whatever be made
as to the initial position of the moving system and as to the zero point of τ , an
additive constant is to be placed on the right side of each of these equations.

We now have to prove that any ray of light, measured in the moving system,
is propagated with the velocity c, if, as we have assumed, this is the case in the
stationary system; for we have not as yet furnished the proof that the principle
of the constancy of the velocity of light is compatible with the principle of
relativity.

At the time t = τ = 0, when the origin of the co-ordinates is common to
the two systems, let a spherical wave be emitted therefrom, and be propagated
with the velocity c in system K. If (x, y, z) be a point just attained by this wave,
then

x2 + y2 + z2 = c2t2.

Transforming this equation with the aid of our equations of transformation
we obtain after a simple calculation

ξ2 + η2 + ζ2 = c2τ2.

The wave under consideration is therefore no less a spherical wave with
velocity of propagation c when viewed in the moving system. This shows that
our two fundamental principles are compatible. 5

In the equations of transformation which have been developed there enters
an unknown function φ of v, which we will now determine.

For this purpose we introduce a third system of co-ordinates K′, which rela-
tively to the system k is in a state of parallel translatory motion parallel to the
axis of X, such that the origin of co-ordinates of system k moves with velocity

5 The equations of the Lorentz transformation may be more simply deduced directly from

the condition that in virtue of those equations the relation x2 + y2 + z2 = c2t2 shall have as

its consequence the second relation ξ2 + η2 + ζ2 = c2τ2.
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−v on the axis of X. At the time t = 0 let all three origins coincide, and when
t = x = y = z = 0 let the time t′ of the system K′ be zero. We call the co-
ordinates, measured in the system K′, x′, y′, z′, and by a twofold application of
our equations of transformation we obtain

t′ = φ(−v)β(−v)(τ + vξ/c2) = φ(v)φ(−v)t,
x′ = φ(−v)β(−v)(ξ + vτ) = φ(v)φ(−v)x,
y′ = φ(−v)η = φ(v)φ(−v)y,
z′ = φ(−v)ζ = φ(v)φ(−v)z.

Since the relations between x′, y′, z′ and x, y, z do not contain the time t,
the systems K and K′ are at rest with respect to one another, and it is clear that
the transformation from K to K′ must be the identical transformation. Thus

φ(v)φ(−v) = 1.

We now inquire into the signification of φ(v). We give our attention to that
part of the axis of Y of system k which lies between ξ = 0, η = 0, ζ = 0 and
ξ = 0, η = l, ζ = 0. This part of the axis of Y is a rod moving perpendicularly
to its axis with velocity v relatively to system K. Its ends possess in K the
co-ordinates

x1 = vt, y1 =
l

φ(v)
, z1 = 0

and
x2 = vt, y2 = 0, z2 = 0.

The length of the rod measured in K is therefore l/φ(v); and this gives us the
meaning of the function φ(v). From reasons of symmetry it is now evident that
the length of a given rod moving perpendicularly to its axis, measured in the
stationary system, must depend only on the velocity and not on the direction
and the sense of the motion. The length of the moving rod measured in the
stationary system does not change, therefore, if v and −v are interchanged.
Hence follows that l/φ(v) = l/φ(−v), or

φ(v) = φ(−v).
It follows from this relation and the one previously found that φ(v) = 1, so that
the transformation equations which have been found become

τ = β(t− vx/c2),

ξ = β(x− vt),

η = y,

ζ = z,

where

β = 1/
√

1 − v2/c2.
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§ 4. Physical Meaning of the Equations Obtained in
Respect to Moving Rigid Bodies and Moving Clocks

We envisage a rigid sphere 6 of radius R, at rest relatively to the moving
system k, and with its centre at the origin of co-ordinates of k. The equation of
the surface of this sphere moving relatively to the system K with velocity v is

ξ2 + η2 + ζ2 = R2.

The equation of this surface expressed in x, y, z at the time t = 0 is

x2

(
√

1 − v2/c2)2
+ y2 + z2 = R2.

A rigid body which, measured in a state of rest, has the form of a sphere,
therefore has in a state of motion—viewed from the stationary system—the
form of an ellipsoid of revolution with the axes

R
√

1 − v2/c2, R, R.

Thus, whereas the Y and Z dimensions of the sphere (and therefore of every
rigid body of no matter what form) do not appear modified by the motion, the
X dimension appears shortened in the ratio 1 :

√

1 − v2/c2, i.e. the greater the
value of v, the greater the shortening. For v = c all moving objects—viewed from
the “stationary” system—shrivel up into plane figures.† For velocities greater
than that of light our deliberations become meaningless; we shall, however, find
in what follows, that the velocity of light in our theory plays the part, physically,
of an infinitely great velocity.

It is clear that the same results hold good of bodies at rest in the “stationary”
system, viewed from a system in uniform motion.

Further, we imagine one of the clocks which are qualified to mark the time
t when at rest relatively to the stationary system, and the time τ when at rest
relatively to the moving system, to be located at the origin of the co-ordinates
of k, and so adjusted that it marks the time τ . What is the rate of this clock,
when viewed from the stationary system?

Between the quantities x, t, and τ , which refer to the position of the clock,
we have, evidently, x = vt and

τ =
1

√

1 − v2/c2
(t− vx/c2).

Therefore,

6 That is, a body possessing spherical form when examined at rest.

† Editor’s note: In the original 1923 English edition, this phrase was erroneously

translated as “plain figures”. I have used the correct “plane figures” in this

edition.
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τ = t
√

1 − v2/c2 = t− (1 −
√

1 − v2/c2)t

whence it follows that the time marked by the clock (viewed in the stationary
system) is slow by 1 −

√

1 − v2/c2 seconds per second, or—neglecting magni-
tudes of fourth and higher order—by 1

2v
2/c2.

From this there ensues the following peculiar consequence. If at the points A
and B of K there are stationary clocks which, viewed in the stationary system,
are synchronous; and if the clock at A is moved with the velocity v along the
line AB to B, then on its arrival at B the two clocks no longer synchronize,
but the clock moved from A to B lags behind the other which has remained at
B by 1

2 tv
2/c2 (up to magnitudes of fourth and higher order), t being the time

occupied in the journey from A to B.
It is at once apparent that this result still holds good if the clock moves from

A to B in any polygonal line, and also when the points A and B coincide.
If we assume that the result proved for a polygonal line is also valid for a

continuously curved line, we arrive at this result: If one of two synchronous
clocks at A is moved in a closed curve with constant velocity until it returns to
A, the journey lasting t seconds, then by the clock which has remained at rest
the travelled clock on its arrival at A will be 1

2 tv
2/c2 second slow. Thence we

conclude that a balance-clock 7 at the equator must go more slowly, by a very
small amount, than a precisely similar clock situated at one of the poles under
otherwise identical conditions.

§ 5. The Composition of Velocities

In the system k moving along the axis of X of the system K with velocity v,
let a point move in accordance with the equations

ξ = wξτ, η = wητ, ζ = 0,

where wξ and wη denote constants.
Required: the motion of the point relatively to the system K. If with the help

of the equations of transformation developed in § 3 we introduce the quantities
x, y, z, t into the equations of motion of the point, we obtain

x =
wξ + v

1 + vwξ/c2
t,

y =

√

1 − v2/c2

1 + vwξ/c2
wηt,

z = 0.

Thus the law of the parallelogram of velocities is valid according to our theory
only to a first approximation. We set

7 Not a pendulum-clock, which is physically a system to which the Earth belongs. This

case had to be excluded.
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V 2 =

(

dx

dt

)2

+

(

dy

dt

)2

,

w2 = w2
ξ + w2

η,

a = tan−1 wy/wx,

a is then to be looked upon as the angle between the velocities v and w. After
a simple calculation we obtain

V =

√

(v2 + w2 + 2vw cos a) − (vw sin a/c)2

1 + vw cos a/c2
.

It is worthy of remark that v and w enter into the expression for the resultant
velocity in a symmetrical manner. If w also has the direction of the axis of X,
we get

V =
v + w

1 + vw/c2
.

It follows from this equation that from a composition of two velocities which
are less than c, there always results a velocity less than c. For if we set v =
c− κ,w = c− λ, κ and λ being positive and less than c, then

V = c
2c− κ− λ

2c− κ− λ+ κλ/c
< c.

It follows, further, that the velocity of light c cannot be altered by compo-
sition with a velocity less than that of light. For this case we obtain

V =
c+ w

1 + w/c
= c.

We might also have obtained the formula for V, for the case when v and w have
the same direction, by compounding two transformations in accordance with §
3. If in addition to the systems K and k figuring in § 3 we introduce still another
system of co-ordinates k′ moving parallel to k, its initial point moving on the
axis of X with the velocity w, we obtain equations between the quantities x,
y, z, t and the corresponding quantities of k′, which differ from the equations
found in § 3 only in that the place of “v” is taken by the quantity

v + w

1 + vw/c2
;

from which we see that such parallel transformations—necessarily—form a
group.

We have now deduced the requisite laws of the theory of kinematics cor-
responding to our two principles, and we proceed to show their application to
electrodynamics.

II. ELECTRODYNAMICAL PART
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§ 6. Transformation of the Maxwell-Hertz Equations for
Empty Space. On the Nature of the Electromotive Forces

Occurring in a Magnetic Field During Motion

Let the Maxwell-Hertz equations for empty space hold good for the station-
ary system K, so that we have

1

c

∂X

∂t
=

∂N

∂y
− ∂M

∂z
,

1

c

∂L

∂t
=

∂Y

∂z
− ∂Z

∂y
,

1

c

∂Y

∂t
=

∂L

∂z
− ∂N

∂x
,

1

c

∂M

∂t
=

∂Z

∂x
− ∂X

∂z
,

1

c

∂Z

∂t
=

∂M

∂x
− ∂L

∂y
,

1

c

∂N

∂t
=

∂X

∂y
− ∂Y

∂x
,

where (X, Y, Z) denotes the vector of the electric force, and (L, M, N) that of
the magnetic force.

If we apply to these equations the transformation developed in § 3, by re-
ferring the electromagnetic processes to the system of co-ordinates there intro-
duced, moving with the velocity v, we obtain the equations

1

c

∂X

∂τ
=

∂

∂η

{

β
(

N − v

c
Y

)}

− ∂

∂ζ

{

β
(

M +
v

c
Z
)}

,

1

c

∂

∂τ

{

β
(

Y − v

c
N

)}

=
∂L

∂ξ
− ∂

∂ζ

{

β
(

N − v

c
Y

)}

,

1

c

∂

∂τ

{

β
(

Z − v

c
M

)}

=
∂

∂ξ

{

β
(

M − v

c
Z
)}

−∂L

∂η
,

1

c

∂L

∂τ
=

∂

∂ζ

{

β
(

Y − v

c
N

)}

− ∂

∂η

{

β
(

Z − v

c
M

)}

,

1

c

∂

∂τ

{

β
(

M − v

c
Z
)}

=
∂

∂ξ

{

β
(

Z − v

c
M

)}

−∂X

∂ζ
,

1

c

∂

∂τ

{

β
(

N − v

c
Y

)}

=
∂X

∂η
− ∂

∂ξ

{

β
(

Y − v

c
N

)}

,

where

β = 1/
√

1 − v2/c2.

Now the principle of relativity requires that if the Maxwell-Hertz equations
for empty space hold good in system K, they also hold good in system k; that
is to say that the vectors of the electric and the magnetic force—(X′, Y′, Z′)
and (L′, M′, N′)—of the moving system k, which are defined by their pondero-
motive effects on electric or magnetic masses respectively, satisfy the following
equations:—

1

c

∂X′

∂τ
=

∂N′

∂η
− ∂M′

∂ζ
,

1

c

∂L′

∂τ
=

∂Y′

∂ζ
− ∂Z′

∂η
,

1

c

∂Y′

∂τ
=

∂L′

∂ζ
− ∂N′

∂ξ
,

1

c

∂M′

∂τ
=

∂Z′

∂ξ
− ∂X′

∂ζ
,

1

c

∂Z′

∂τ
=

∂M′

∂ξ
− ∂L′

∂η
,

1

c

∂N′

∂τ
=

∂X′

∂η
− ∂Y′

∂ξ
.
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Evidently the two systems of equations found for system k must express
exactly the same thing, since both systems of equations are equivalent to the
Maxwell-Hertz equations for system K. Since, further, the equations of the two
systems agree, with the exception of the symbols for the vectors, it follows that
the functions occurring in the systems of equations at corresponding places must
agree, with the exception of a factor ψ(v), which is common for all functions
of the one system of equations, and is independent of ξ, η, ζ and τ but depends
upon v. Thus we have the relations

X′ = ψ(v)X, L′ = ψ(v)L,
Y′ = ψ(v)β

(

Y − v
c N

)

, M′ = ψ(v)β
(

M − v
c Z

)

,

Z′ = ψ(v)β
(

Z − v
c M

)

, N′ = ψ(v)β
(

N − v
c Y

)

.

If we now form the reciprocal of this system of equations, firstly by solving
the equations just obtained, and secondly by applying the equations to the
inverse transformation (from k to K), which is characterized by the velocity −v,
it follows, when we consider that the two systems of equations thus obtained
must be identical, that ψ(v)ψ(−v) = 1. Further, from reasons of symmetry 8

and therefore

ψ(v) = 1,

and our equations assume the form

X′ = X, L′ = L,
Y′ = β

(

Y − v
c N

)

, M′ = β
(

M + v
c Z

)

,

Z′ = β
(

Z + v
c M

)

, N′ = β
(

N − v
c Y

)

.

As to the interpretation of these equations we make the following remarks: Let
a point charge of electricity have the magnitude “one” when measured in the
stationary system K, i.e. let it when at rest in the stationary system exert a
force of one dyne upon an equal quantity of electricity at a distance of one cm.
By the principle of relativity this electric charge is also of the magnitude “one”
when measured in the moving system. If this quantity of electricity is at rest
relatively to the stationary system, then by definition the vector (X, Y, Z) is
equal to the force acting upon it. If the quantity of electricity is at rest relatively
to the moving system (at least at the relevant instant), then the force acting
upon it, measured in the moving system, is equal to the vector (X′, Y′, Z′).
Consequently the first three equations above allow themselves to be clothed in
words in the two following ways:—

1. If a unit electric point charge is in motion in an electromagnetic field,
there acts upon it, in addition to the electric force, an “electromotive force”
which, if we neglect the terms multiplied by the second and higher powers of

8 If, for example, X=Y=Z=L=M=0, and N 6= 0, then from reasons of symmetry it is clear

that when v changes sign without changing its numerical value, Y′ must also change sign

without changing its numerical value.
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v/c, is equal to the vector-product of the velocity of the charge and the magnetic
force, divided by the velocity of light. (Old manner of expression.)

2. If a unit electric point charge is in motion in an electromagnetic field,
the force acting upon it is equal to the electric force which is present at the
locality of the charge, and which we ascertain by transformation of the field to
a system of co-ordinates at rest relatively to the electrical charge. (New manner
of expression.)

The analogy holds with “magnetomotive forces.” We see that electromotive
force plays in the developed theory merely the part of an auxiliary concept,
which owes its introduction to the circumstance that electric and magnetic forces
do not exist independently of the state of motion of the system of co-ordinates.

Furthermore it is clear that the asymmetry mentioned in the introduction
as arising when we consider the currents produced by the relative motion of a
magnet and a conductor, now disappears. Moreover, questions as to the “seat”
of electrodynamic electromotive forces (unipolar machines) now have no point.

§ 7. Theory of Doppler’s Principle and of Aberration

In the system K, very far from the origin of co-ordinates, let there be a
source of electrodynamic waves, which in a part of space containing the origin
of co-ordinates may be represented to a sufficient degree of approximation by
the equations

X = X0 sinΦ, L = L0 sin Φ,
Y = Y0 sinΦ, M = M0 sinΦ,
Z = Z0 sin Φ, N = N0 sin Φ,

where

Φ = ω

{

t− 1

c
(lx+my + nz)

}

.

Here (X0, Y0, Z0) and (L0, M0, N0) are the vectors defining the amplitude of
the wave-train, and l,m, n the direction-cosines of the wave-normals. We wish
to know the constitution of these waves, when they are examined by an observer
at rest in the moving system k.

Applying the equations of transformation found in § 6 for electric and mag-
netic forces, and those found in § 3 for the co-ordinates and the time, we obtain
directly

X′ = X0 sin Φ′, L′ = L0 sinΦ′,
Y′ = β(Y0 − vN0/c) sin Φ′, M′ = β(M0 + vZ0/c) sinΦ′,
Z′ = β(Z0 + vM0/c) sinΦ′, N′ = β(N0 − vY0/c) sinΦ′,
Φ′ = ω′

{

τ − 1
c (l′ξ +m′η + n′ζ)

}

where
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ω′ = ωβ(1 − lv/c),

l′ =
l − v/c

1 − lv/c
,

m′ =
m

β(1 − lv/c)
,

n′ =
n

β(1 − lv/c)
.

From the equation for ω′ it follows that if an observer is moving with velocity
v relatively to an infinitely distant source of light of frequency ν, in such a way
that the connecting line “source-observer” makes the angle φ with the velocity
of the observer referred to a system of co-ordinates which is at rest relatively
to the source of light, the frequency ν′ of the light perceived by the observer is
given by the equation

ν′ = ν
1 − cosφ · v/c
√

1 − v2/c2
.

This is Doppler’s principle for any velocities whatever. When φ = 0 the equation
assumes the perspicuous form

ν′ = ν

√

1 − v/c

1 + v/c
.

We see that, in contrast with the customary view, when v = −c, ν′ = ∞.
If we call the angle between the wave-normal (direction of the ray) in the

moving system and the connecting line “source-observer” φ′, the equation for l′

assumes the form

cosφ′ =
cosφ− v/c

1 − cosφ · v/c .

This equation expresses the law of aberration in its most general form. If φ =
1
2π, the equation becomes simply

cosφ′ = −v/c.
We still have to find the amplitude of the waves, as it appears in the moving

system. If we call the amplitude of the electric or magnetic force A or A′

respectively, accordingly as it is measured in the stationary system or in the
moving system, we obtain

A′2 = A2 (1 − cosφ · v/c)2
1 − v2/c2

which equation, if φ = 0, simplifies into

A′2 = A2 1 − v/c

1 + v/c
.
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It follows from these results that to an observer approaching a source of light
with the velocity c, this source of light must appear of infinite intensity.

§ 8. Transformation of the Energy of Light Rays. Theory
of the Pressure of Radiation Exerted on Perfect Reflectors

Since A2/8π equals the energy of light per unit of volume, we have to regard

A′2/8π, by the principle of relativity, as the energy of light in the moving system.

Thus A′2/A2 would be the ratio of the “measured in motion” to the “measured
at rest” energy of a given light complex, if the volume of a light complex were
the same, whether measured in K or in k. But this is not the case. If l,m, n are
the direction-cosines of the wave-normals of the light in the stationary system,
no energy passes through the surface elements of a spherical surface moving
with the velocity of light:—

(x− lct)2 + (y −mct)2 + (z − nct)2 = R2.

We may therefore say that this surface permanently encloses the same light
complex. We inquire as to the quantity of energy enclosed by this surface,
viewed in system k, that is, as to the energy of the light complex relatively to
the system k.

The spherical surface—viewed in the moving system—is an ellipsoidal sur-
face, the equation for which, at the time τ = 0, is

(βξ − lβξv/c)2 + (η −mβξv/c)2 + (ζ − nβξv/c)2 = R2.

If S is the volume of the sphere, and S′ that of this ellipsoid, then by a simple
calculation

S′

S
=

√

1 − v2/c2

1 − cosφ · v/c .

Thus, if we call the light energy enclosed by this surface E when it is measured in
the stationary system, and E′ when measured in the moving system, we obtain

E′

E
=

A′2S′

A2S
=

1 − cosφ · v/c
√

1 − v2/c2
,

and this formula, when φ = 0, simplifies into

E′

E
=

√

1 − v/c

1 + v/c
.

It is remarkable that the energy and the frequency of a light complex vary
with the state of motion of the observer in accordance with the same law.

Now let the co-ordinate plane ξ = 0 be a perfectly reflecting surface, at
which the plane waves considered in § 7 are reflected. We seek for the pressure
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of light exerted on the reflecting surface, and for the direction, frequency, and
intensity of the light after reflexion.

Let the incidental light be defined by the quantities A, cosφ, ν (referred to
system K). Viewed from k the corresponding quantities are

A′ =A
1 − cosφ · v/c
√

1 − v2/c2
,

cosφ′ =
cosφ− v/c

1 − cosφ · v/c ,

ν′ =ν
1 − cosφ · v/c
√

1 − v2/c2
.

For the reflected light, referring the process to system k, we obtain

A′′ = A′

cosφ′′ = − cosφ′

ν′′ = ν′

Finally, by transforming back to the stationary system K, we obtain for the
reflected light

A′′′ = A′′
1 + cosφ′′ · v/c
√

1 − v2/c2
= A

1 − 2 cosφ · v/c+ v2/c2

1 − v2/c2
,

cosφ′′′ =
cosφ′′ + v/c

1 + cosφ′′ · v/c = − (1 + v2/c2) cosφ− 2v/c

1 − 2 cosφ · v/c+ v2/c2
,

ν′′′ = ν′′
1 + cosφ′′ · v/c

√

1 − v2/c2
= ν

1 − 2 cosφ · v/c+ v2/c2

1 − v2/c2
.

The energy (measured in the stationary system) which is incident upon unit area
of the mirror in unit time is evidently A2(c cosφ − v)/8π. The energy leaving
the unit of surface of the mirror in the unit of time is A′′′2(−c cosφ′′′ + v)/8π.
The difference of these two expressions is, by the principle of energy, the work
done by the pressure of light in the unit of time. If we set down this work as
equal to the product Pv, where P is the pressure of light, we obtain

P = 2 · A2

8π

(cosφ− v/c)2

1 − v2/c2
.

In agreement with experiment and with other theories, we obtain to a first
approximation

P = 2 · A2

8π
cos2 φ.

All problems in the optics of moving bodies can be solved by the method
here employed. What is essential is, that the electric and magnetic force of the
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light which is influenced by a moving body, be transformed into a system of
co-ordinates at rest relatively to the body. By this means all problems in the
optics of moving bodies will be reduced to a series of problems in the optics of
stationary bodies.

§ 9. Transformation of the Maxwell-Hertz Equations
when Convection-Currents are Taken into Account

We start from the equations

1

c

{

∂X

∂t
+ uxρ

}

=
∂N

∂y
− ∂M

∂z
,

1

c

∂L

∂t
=

∂Y

∂z
− ∂Z

∂y
,

1

c

{

∂Y

∂t
+ uyρ

}

=
∂L

∂z
− ∂N

∂x
,

1

c

∂M

∂t
=

∂Z

∂x
− ∂X

∂z
,

1

c

{

∂Z

∂t
+ uzρ

}

=
∂M

∂x
− ∂L

∂y
,

1

c

∂N

∂t
=

∂X

∂y
− ∂Y

∂x
,

where

ρ =
∂X

∂x
+
∂Y

∂y
+
∂Z

∂z

denotes 4π times the density of electricity, and (ux, uy, uz) the velocity-vector of
the charge. If we imagine the electric charges to be invariably coupled to small
rigid bodies (ions, electrons), these equations are the electromagnetic basis of
the Lorentzian electrodynamics and optics of moving bodies.

Let these equations be valid in the system K, and transform them, with the
assistance of the equations of transformation given in §§ 3 and 6, to the system
k. We then obtain the equations

1

c

{

∂X′

∂τ
+ uξρ

′

}

=
∂N′

∂η
− ∂M′

∂ζ
,

1

c

∂L′

∂τ
=

∂Y′

∂ζ
− ∂Z′

∂η
,

1

c

{

∂Y′

∂τ
+ uηρ

′

}

=
∂L′

∂ζ
− ∂N′

∂ξ
,

1

c

∂M′

∂τ
=

∂Z′

∂ξ
− ∂X′

∂ζ
,

1

c

{

∂Z′

∂τ
+ uζρ

′

}

=
∂M′

∂ξ
− ∂L′

∂η
,

1

c

∂N′

∂τ
=

∂X′

∂η
− ∂Y′

∂ξ
,

where

uξ =
ux − v

1 − uxv/c2

uη =
uy

β(1 − uxv/c2)

uζ =
uz

β(1 − uxv/c2)
,

and

ρ′ =
∂X′

∂ξ
+
∂Y′

∂η
+
∂Z ′

∂ζ

= β(1 − uxv/c
2)ρ.
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Since—as follows from the theorem of addition of velocities (§ 5)—the vector
(uξ, uη, uζ) is nothing else than the velocity of the electric charge, measured in
the system k, we have the proof that, on the basis of our kinematical principles,
the electrodynamic foundation of Lorentz’s theory of the electrodynamics of
moving bodies is in agreement with the principle of relativity.

In addition I may briefly remark that the following important law may easily
be deduced from the developed equations: If an electrically charged body is in
motion anywhere in space without altering its charge when regarded from a
system of co-ordinates moving with the body, its charge also remains—when
regarded from the “stationary” system K—constant.

§ 10. Dynamics of the Slowly Accelerated Electron

Let there be in motion in an electromagnetic field an electrically charged
particle (in the sequel called an “electron”), for the law of motion of which we
assume as follows:—

If the electron is at rest at a given epoch, the motion of the electron ensues
in the next instant of time according to the equations

m
d2x

dt2
= ǫX

m
d2y

dt2
= ǫY

m
d2z

dt2
= ǫZ

where x, y, z denote the co-ordinates of the electron, and m the mass of the
electron, as long as its motion is slow.

Now, secondly, let the velocity of the electron at a given epoch be v. We
seek the law of motion of the electron in the immediately ensuing instants of
time.

Without affecting the general character of our considerations, we may and
will assume that the electron, at the moment when we give it our attention, is
at the origin of the co-ordinates, and moves with the velocity v along the axis of
X of the system K. It is then clear that at the given moment (t = 0) the electron
is at rest relatively to a system of co-ordinates which is in parallel motion with
velocity v along the axis of X.

From the above assumption, in combination with the principle of relativity, it
is clear that in the immediately ensuing time (for small values of t) the electron,
viewed from the system k, moves in accordance with the equations

m
d2ξ

dτ2
= ǫX′,

m
d2η

dτ2
= ǫY′,

m
d2ζ

dτ2
= ǫZ′,
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in which the symbols ξ, η, ζ, X′, Y′, Z′ refer to the system k. If, further, we
decide that when t = x = y = z = 0 then τ = ξ = η = ζ = 0, the transformation
equations of §§ 3 and 6 hold good, so that we have

ξ = β(x− vt), η = y, ζ = z, τ = β(t− vx/c2),

X′ = X,Y′ = β(Y − vN/c),Z′ = β(Z + vM/c).

With the help of these equations we transform the above equations of motion
from system k to system K, and obtain

d2x
dt2 = ǫ

mβ3 X
d2y
dt2 = ǫ

mβ

(

Y − v
c N

)

d2z
dt2 = ǫ

mβ

(

Z − v
c M

)











(A)

Taking the ordinary point of view we now inquire as to the “longitudinal” and
the “transverse” mass of the moving electron. We write the equations (A) in
the form

mβ3 d2x
dt2 = ǫX = ǫX′,

mβ2 d2y
dt2 = ǫβ

(

Y − v
c N

)

= ǫY′,

mβ2 d2z
dt2 = ǫβ

(

Z − v
c M

)

= ǫZ′,

and remark firstly that ǫX′, ǫY′, ǫZ′ are the components of the ponderomotive
force acting upon the electron, and are so indeed as viewed in a system moving
at the moment with the electron, with the same velocity as the electron. (This
force might be measured, for example, by a spring balance at rest in the last-
mentioned system.) Now if we call this force simply “the force acting upon the
electron,” 9 and maintain the equation—mass × acceleration = force—and if we
also decide that the accelerations are to be measured in the stationary system
K, we derive from the above equations

Longitudinal mass =
m

(
√

1 − v2/c2)3
.

Transverse mass =
m

1 − v2/c2
.

With a different definition of force and acceleration we should naturally obtain
other values for the masses. This shows us that in comparing different theories
of the motion of the electron we must proceed very cautiously.

We remark that these results as to the mass are also valid for ponderable
material points, because a ponderable material point can be made into an elec-
tron (in our sense of the word) by the addition of an electric charge, no matter
how small.

9 The definition of force here given is not advantageous, as was first shown by M. Planck.

It is more to the point to define force in such a way that the laws of momentum and energy

assume the simplest form.
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We will now determine the kinetic energy of the electron. If an electron
moves from rest at the origin of co-ordinates of the system K along the axis
of X under the action of an electrostatic force X, it is clear that the energy
withdrawn from the electrostatic field has the value

∫

ǫX dx. As the electron is
to be slowly accelerated, and consequently may not give off any energy in the
form of radiation, the energy withdrawn from the electrostatic field must be put
down as equal to the energy of motion W of the electron. Bearing in mind that
during the whole process of motion which we are considering, the first of the
equations (A) applies, we therefore obtain

W =

∫

ǫX dx = m

∫ v

0

β3v dv

= mc2

{

1
√

1 − v2/c2
− 1

}

.

Thus, when v = c, W becomes infinite. Velocities greater than that of light
have—as in our previous results—no possibility of existence.

This expression for the kinetic energy must also, by virtue of the argument
stated above, apply to ponderable masses as well.

We will now enumerate the properties of the motion of the electron which
result from the system of equations (A), and are accessible to experiment.

1. From the second equation of the system (A) it follows that an electric
force Y and a magnetic force N have an equally strong deflective action on an
electron moving with the velocity v, when Y = Nv/c. Thus we see that it is
possible by our theory to determine the velocity of the electron from the ratio
of the magnetic power of deflexion Am to the electric power of deflexion Ae, for
any velocity, by applying the law

Am

Ae
=
v

c
.

This relationship may be tested experimentally, since the velocity of the
electron can be directly measured, e.g. by means of rapidly oscillating electric
and magnetic fields.

2. From the deduction for the kinetic energy of the electron it follows that
between the potential difference, P, traversed and the acquired velocity v of the
electron there must be the relationship

P =

∫

Xdx =
m

ǫ
c2

{

1
√

1 − v2/c2
− 1

}

.

3. We calculate the radius of curvature of the path of the electron when a
magnetic force N is present (as the only deflective force), acting perpendicularly
to the velocity of the electron. From the second of the equations (A) we obtain

−d
2y

dt2
=
v2

R
=

ǫ

m

v

c
N

√

1 − v2

c2
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or

R =
mc2

ǫ
· v/c
√

1 − v2/c2
· 1

N
.

These three relationships are a complete expression for the laws according
to which, by the theory here advanced, the electron must move.

In conclusion I wish to say that in working at the problem here dealt with
I have had the loyal assistance of my friend and colleague M. Besso, and that I
am indebted to him for several valuable suggestions.
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§ 2. Einstein’s E = mc2 paper

In this section we provide a translation of Einstein’s second paper in which
he derives the famous equation E = mc2. It is only three pages long. The
reference for the original German article is Ist die Trägheit eines Körpers von
seinem Energiegehalt abhängig?, Annalen der Physik, 323, 639–641, (1905).

DOES THE INERTIA OF A BODY DEPEND

UPON ITS ENERGY-CONTENT?

By A. EINSTEIN

September 27, 1905

The results of the previous investigation lead to a very interesting conclusion,
which is here to be deduced.

I based that investigation on the Maxwell-Hertz equations for empty space,
together with the Maxwellian expression for the electromagnetic energy of space,
and in addition the principle that:—

The laws by which the states of physical systems alter are independent of
the alternative, to which of two systems of coordinates, in uniform motion of
parallel translation relatively to each other, these alterations of state are referred
(principle of relativity).

With these principles 1 as my basis I deduced inter alia the following result
(§ 8):—

Let a system of plane waves of light, referred to the system of co-ordinates
(x, y, z), possess the energy l; let the direction of the ray (the wave-normal)
make an angle φ with the axis of x of the system. If we introduce a new system
of co-ordinates (ξ, η, ζ) moving in uniform parallel translation with respect to
the system (x, y, z), and having its origin of co-ordinates in motion along the
axis of x with the velocity v, then this quantity of light—measured in the system
(ξ, η, ζ)—possesses the energy

l∗ = l
1 − v

c cosφ
√

1 − v2/c2

where c denotes the velocity of light. We shall make use of this result in what
follows.

1 The principle of the constancy of the velocity of light is of course contained in Maxwell’s

equations.
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Let there be a stationary body in the system (x, y, z), and let its energy—
referred to the system (x, y, z) be E0. Let the energy of the body relative to the
system (ξ, η, ζ) moving as above with the velocity v, be H0.

Let this body send out, in a direction making an angle φ with the axis
of x, plane waves of light, of energy 1

2L measured relatively to (x, y, z), and
simultaneously an equal quantity of light in the opposite direction. Meanwhile
the body remains at rest with respect to the system (x, y, z). The principle of
energy must apply to this process, and in fact (by the principle of relativity)
with respect to both systems of co-ordinates. If we call the energy of the body
after the emission of light E1 or H1 respectively, measured relatively to the
system (x, y, z) or (ξ, η, ζ) respectively, then by employing the relation given
above we obtain

E0 = E1 +
1

2
L +

1

2
L,

H0 = H1 +
1

2
L

1 − v
c cosφ

√

1 − v2/c2
+

1

2
L

1 + v
c cosφ

√

1 − v2/c2

= H1 +
L

√

1 − v2/c2

By subtraction we obtain from these equations

H0 − E0 − (H1 − E1) = L

{

1
√

1 − v2/c2
− 1

}

.

The two differences of the form H − E occurring in this expression have simple
physical significations. H and E are energy values of the same body referred
to two systems of co-ordinates which are in motion relatively to each other,
the body being at rest in one of the two systems (system (x, y, z)). Thus it is
clear that the difference H−E can differ from the kinetic energy K of the body,
with respect to the other system (ξ, η, ζ), only by an additive constant C, which
depends on the choice of the arbitrary additive constants of the energies H and
E. Thus we may place

H0 − E0 = K0 + C,

H1 − E1 = K1 + C,

since C does not change during the emission of light. So we have

K0 − K1 = L

{

1
√

1 − v2/c2
− 1

}

.

The kinetic energy of the body with respect to (ξ, η, ζ) diminishes as a result
of the emission of light, and the amount of diminution is independent of the
properties of the body. Moreover, the difference K0−K1, like the kinetic energy
of the electron (§ 10), depends on the velocity.

Neglecting magnitudes of fourth and higher orders we may place
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K0 − K1 =
1

2

L

c2
v2.

From this equation it directly follows that:—
If a body gives off the energy L in the form of radiation, its mass diminishes

by L/c2. The fact that the energy withdrawn from the body becomes energy of
radiation evidently makes no difference, so that we are led to the more general
conclusion that

The mass of a body is a measure of its energy-content; if the energy changes
by L, the mass changes in the same sense by L/9 × 1020, the energy being
measured in ergs, and the mass in grammes.

It is not impossible that with bodies whose energy-content is variable to a
high degree (e.g. with radium salts) the theory may be successfully put to the
test.

If the theory corresponds to the facts, radiation conveys inertia between the
emitting and absorbing bodies.
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