
p. 1 Introducing 4-vectors

1 Ordinary vectors and rotation

We introduced 4-vectors as 4-component objects which transform in a cer-
tain way under Lorentz transformations. This may seem unrelated to how
you first learned about (ordinary) vectors, which was probably without
reference to any transformation. In fact, ordinary vectors (which we will
also refer to as 3-vectors or Euclidean vectors) can be identified as 3-component
objects which transform in a certain way under rotations. In this section, we
will examine this way of thinking about 3-vectors and ordinary scalars, so
that we can generalize properly to the relativistic (4-dimensional) case.
If a displacement vector~r points at angle φ with respect to some axis, it
has components r cos φ and r sin φ parallel and perpendicular to that axis.
This geometric or trigonometric property of~r is essential to figuring out
the transformation matrix taking~r = (x, y, z) to ~r′ = (x′, y′, z′) when the
coordinate system is rotated.

Now any vector ~A (be it a velocity, force,...) has components A cos φ and
A sin φ in directions parallel and perpendicular to an axis with respect to
which the direction of ~A is at angle φ. This property is shared by all 3-
vectors with the displacement vector~r. Hence the components of ~A should
transform exactly the same way as the components of~r.
For example, if the x′-y′ coordinate system is obtained by rotating the x-y
system by angle θ (around the common z, z′ axis), and if

~A = Ax î + Ay ĵ + Azk̂ = A′x î′ + A′y ĵ′ + A′zk̂′

then A′x
A′y
A′z

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

Ax
Ay
Az


More generally, if under a rotation of coordinate axes, the position coordi-
nates transform as x′

y′

z′

 = R

x
y
z


where R is an orthogonal 3 × 3 matrix, then the components of any 3-
vector ~A will transform under that rotation asA′x

A′y
A′z

 = R

Ax
Ay
Az

 .

In fact, this may be thought of as the definition of a 3-vector:
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Non-relativistic vectors

A 3-vector (or non-relativistic vector or ‘ordinary’ vector) is a three-
component object whose components transform the same way un-
der rotations as the components of displacement vectors.

This definition is consistent with the idea that a vector is a quantity that
has both magnitude and direction. (Maybe this is how you were intro-
duced to vectors?) A quantity having both magnitude and direction should
be decompose-able into components according to the usual trigonometric
rules, and therefore these components should transform under rotations
the same way as the components of a displacement vector.

1.1 Non-examples

A vector is not just a collection of three numbers, i.e., not every 3-tuple is
a vector. Examples of non-vectors:

1. Imagine an object with mass m and charge q. Of course, the velocity
~v = (vx, vy, vz) of the object is a vector.

What about the combination (q, m, vz)? It has three components,
each of which are physical properties related to the object. This is
NOT a vector because these components do not transform correctly
under rotation. The mass m and charge q do not change at all under
rotation.

2. If d~r = (dx, dy, dz) is a displacement vector, then the combination
(dx, 2dy, dz) is NOT a 3-vector.

Why? Under a rotation around the z axis, we know that dx′ =
dx cos θ − dy sin θ and dy′ = dx sin θ + dy cos θ because d~r is a dis-
placement. This is utterly incompatible with Totally

incorrect!
dx′ = dx cos θ − (2dy) sin θ, 2dy′ = dx sin θ + (2dy) cos θ

which is what one would need, if (dx, 2dy, dz) were to be a valid 3-
vector.

1.2 What is a scalar?

In non-relativistic physics, you might have learned that a scalar is an object
which, unlike a vector, has no direction. Thus, you might have thought of
a scalar as a single component object, i.e., something that can be described
by a single number.
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We will have to expand our understanding of scalars a bit. Not every
single-component number is a scalar!

Non-relativistic scalars

In non-relativistic physics, a scalar is a single-component quantity
that remains invariant under rotations.

Examples of scalars:

• The dot product of two 3-vectors is a scalar. Important:
Inner
prod-
ucts
pro-
duce

scalars!

If the rotation matrix is R, then the dot product of ~A and ~B transforms
under rotation to

~A′ · ~B′ = A′TB′ = (RA)T(RB) = AT(RTR)B = ATB = ~A · ~B

where we have used the convention that A, B are column vectors and
AT, BT are row vectors.

• Thus, the work done on an object (~F · d~r) is a non-relativistic scalar, and
so is the kinetic energy which is the total work done in getting an ob-
ject up to its current speed. Note that work (or energy) is not invariant
under a Galiliean transformation or a Lorentz transformation. Never-
theless, this is a non-relativistic scalar — the requirement is invariance
under rotations, not any other type of transformation. Magnitudes

of
vectors

are
scalars!

• In particular, the magnitudes of vectors are scalars, because they are
obtained by taking the inner product of the vector with itself. If ~v is a
velocity, the speed v = |~v| =

√
~v ·~v is a non-relativistic scalar.

The speed of a massive particle has no invariance under Galilean or
Lorentz transformations, only under rotations.

• Physical examples of (non-relativistic) scalars: the mass or charge car-
ried by an object. In non-relativistic physics they are not affected by the
choice of coordinate system or axis orientation.

• We could define numerical values which are independent of reference
frame. For example, the numbers 42 and 3− i are scalars, as long as we
understand them to have these values independent of the orientation of
reference frame.

1.2.1 A non-scalar

A component of a 3-vector is NOT a scalar. For example, if~v is a 3-velocity,
then the component vx is NOT a scalar. It gets transformed to something
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else under rotations, i.e., is not invariant. For example, under a rotation
around the z axis, it gets transformed to

v′x = vx cos θ − vy sin θ

which, except for very special cases, 6= vx. Thus, even though vx is a single
number, it is not a scalar.

1.3 Summary

We have learned that a vector is not just a collection of three numbers,
and a scalar is not just any single number. The transformation properties
under rotation is what determines whether a three-component object is a
vector or not, and whether a one-component object is a scalar or not.
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2 Four-vectors and invariants

We are now ready to define 4-vectors, in analogy to 3-vectors, in terms
of their transformation properties. For good measure, we will also define
analogs of 3-scalars in the 4-dimensional world. We will discuss some
properties of these objects, and define inner products between 4-vectors.

2.1 Deinfing 4-vectors

Definition: 4-vectors

The 4-tuplet A = (A0, A1, A2, A3) is a 4-vector if the components
Aµ transform under Lorentz transformations in the same way as
a spacetime interval (cdt, dx, dy, dz) or as a spacetime coordinate
(ct, x, y, z).

Comments:

1. Reminder: A Lorentz transformation is any 4× 4 transformation matrix
Λ that satisfies ΛTgΛ = g. Lorentz transformations consist of boosts,
rotations, and any combination thereof.

2. Since the last three components of a spacetime coordinate are the co-
ordinates of a displacement 3-vector, the last three components of any
4-vector must form an ordinary vector or Euclidean 3-vector. In other
words, if A = (A0, A1, A2, A3) is a 4-vector, then (A1, A2, A3) = ~A is an
ordinary vector.

3. If inertial frames Σ and Σ̃ are related by a standard boost, then the com-
ponents of the 4-vector A as measured from the two frames will be re-
lated by

Ã0 = γv

(
A0 − (v/c)A1

)
,

Ã1 = γv

(
−(v/c)A0 + A1

)
,

Ã2 = A2, Ã3 = A3,

i.e., exactly the same way as spacetime coordinates transform under the
standard boost.

4. If inertial frames Σ and Σ̃ are related by a mere rotation (and no boost),
then the components transform as

Ã0

Ã1

Ã2

Ã3

 =


1 0 0 0
0
0 R
0




A0

A1

A2

A3
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where R is the rotation matrix. This is exactly how spacetime coordi-
nates (x0 = ct, x1 = x, x2 = y, x3 = z) would transform under rotations.
Remember that rotations are Lorentz transformations, as the transfor-
mation matrix appearing above satisfies ΛTgΛ = g.

This equation above shows visually that the components (A1, A2, A3)
transform as an ordinary vector under rotations, and hence that these
components form a 3-vector.

5. We have used superscripts for the coordinate indices. This could be po-
tentially confusing as we are used to thinking of superscripted numbers
as powers (exponents): does A2 refer to A-squared or to the 2nd spatial
component of A? Unfortunately, we have to rely on context to make
sure we know which meaning is attached.

6. A 4-vector should transform like an interval between two spacetime
events, (c∆t, ∆x, ∆y, ∆z) or (cdt, dx, dy, dz). Lorentz transformations are
defined to be homogeneous, i.e., the zero event (0, 0, 0, 0) is defined to
be the same for every inertial frame. Therefore we can equally well talk
about transformations of the coordinates of a single event (ct, x, y, z),
because this can be thought of as the interval between this event and
the zero event.

7. Since a four-vector A = (A0, A1, A2, A3) transforms like a spacetime
interval, this means that the combination

(A0)2 − (A1)2 − (A2)2 − (A3)2

is invariant under Lorentz transformations. We will later interpret this
as the ‘norm’ of the 4-vector A.

Other than spacetime events, we have met another 4-vector: the 4-
momentum of an object, (E/c, px, py, pz). Therefore the combination(

E
c

)2

− p2
x − p2

y − p2
z =

E2

c2 − ~p · ~p =
E2

c2 − p2

is invariant under LTs. This is consistent with the relativistic expres-
sions we have learned for E and ~p, because

E2

c2 − p2 =
p2c2 + m2c4

c2 − p2 = m2c2

where m is the rest mass, a property of the object, independent of the
inertial frame.

8. Four-vectors are also known as Minkowski vectors. In more advanced
physics literature based on special relativity (e.g., in a text on quantum
field theory) they might just be called vectors. One should be able to
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figure out from the context whether ‘vector’ refers to an ordinary vector
or a 4-vector. Of course, in other branches of physics or math, a ‘vector’
may mean something else altogether, for example, wavevectors or ‘ket’
vectors in quantum mechanics.

9. In your introductory mechanics and your electromagnetism class, char-
acters representng 3-vectors (usually a Latin character) were usually
distinguished typographically from scalars, either by using an arrow
on top of the character or using boldface. We have been following this
tradition, using an arrow on top to indicate that a character represents
a 3-vector.

It would be nice if there was always a typographic signal to tell us what
type of object a character represents. But this would be difficult — there
are just too many types of objects. For example, when a letter represents
a matrix, or a row vector, there is no common convention to show this
typographically. You need to figure out from the context what type of
object is represented by which character.

Unfortunately, this is also true for 4-vectors. The most common con-
vention in typed literature is to represent them with characters in italics
without any special markings. We have done this above, by saying that
A is a 4-vector. Clearly, you need to be extra careful and ask yourself
continuously what type of object is being represented by which symbol.

However, below in this chapter, we will use a thick arrow convention

to represent 4-vectors, thus,
=⇒
A is a 4-vector. Hopefully, this will ease

the transition into dealing with 4-vectors.

2.2 Defining Lorentz scalars

Now for scalars in relativity. These may be called 4-scalars, which sounds
silly because they are single-component objects. “Lorentz scalar” is a more
appropriate name. In a textbook on quantum field theory, they would be
just referred to as a scalar.

Definition: Lorentz scalars

In relativistic physics, a quantity is called a scalar if it is invariant
under Lorentz transformations.

Comments and examples:

1. An obvious Lorentz scalar is the speed of light c — this quantity is
Lorentz invariant by definition.
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2. Another set of Lorentz scalars: numbers which are defined indepen-
dently of reference frame. If we define α = 2.0 independently of refer-
ence frame, then α is a scalar.

3. The interval c∆τ =
√

c2(∆t)2 − |∆~r|2 between two events is a scalar.

Note that the interval ∆t between two events is not a Lorentz scalar,
as it is not an invariant under LT, and is generally different when mea-
sured from another (boosted) frame. Of course, ∆t is a scalar in non-
relativistic physics as time is invariant under non-relativistic rotations.

Similarly, |∆~r| is the Euclidean norm of a 3-vector, and hence is a non-
relativistic scalar, but it is not a Lorentz scalar.

4. In general, a non-relativistic scalar is not necessarily a Lorentz scalar,
but a Lorentz scalar has to be a non-relativistic scalar as well because
rotations are valid LTs.

5. Another example of a Lorentz scalar is the rest mass of an object. We
have noted previously that the rest mass is related to the 4-momentum:

m =

√
E2

c4 −
p2

c2 .

In non-relativistic physics, both E and p =
√
~p · ~p are scalars, as they

are invariant under rotations. However, neither of these quantities are
Lorentz scalars.

6. There was a long period (perhaps half of the 20th century) during which
it was common to refer to the combination m̃ = γvm as ‘mass’. (Some
popular science books still use this terminology.) This was tempting
because momentum would then have the familiar form of ‘mass’ × ve-
locity. The Feynman lectures, dating from the 1960s, use this langauge
as well.

This terminlogy is no longer used in the professional physics literature.
One argument is that m is Lorentz invariant (a scalar) while γvm is not;
hence m is more deserving of the fundamental-sounding name ‘mass’.
The combination γvm, if it is to be given a name at all, could be called
the ‘relativistic mass’.

2.3 Adding & multiplying — Inner products & norms

A 4-vector multiplied (or divided) by a Lorentz scalar gives another 4-

vector. If
=⇒
A = (A0, A1, A2, A3) is a 4-vector and s is a Lorentz scalar,

then
=⇒
B = s

=⇒
A = (sA0, sA1, sA2, sA3) is a 4-vector.
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Exercise: Show that the elements of
=⇒
B indeed transform as a 4-

vector under a Lorentz transformation.

The sum of two 4-vectors is also a 4-vector: If
=⇒
C = (C0, C1, C2, C3) and

=⇒
D = (D0, D1, D2, D3) are 4-vectors, then so is

=⇒
E =

=⇒
C +

=⇒
D = (C0 +

D0, C1 + D1, C2 + D2, C3 + D3). Exercise: Show!
Note that we have implicity defined the operations: of multiplication by a
scalar and addition of two 4-vectors.
Next, we will define an inner product between two 4-vectors. Recall that
the inner (dot) product of two 3-vectors produces a non-relativistic scalar.
By analogy, we would like an inner product of two 4-vectors to produce
a Lorentz scalar, i.e., a single-component object invariant under Lorentz
transformations. This is achieved by the following definition.

Definition: Inner product of two 4-vectors

The inner product of 4-vectors (A0, A1, A2, A3) and (B0, B1, B2, B3) is
the quantity A0B0 − A1B1 − A2B2 − A3B3.

If we want to continue to use our thick-arrow notation to distinguish 4-
vectors, we might write this is as

=⇒
A ?

=⇒
B = A0B0 − A1B1 − A2B2 − A3B3.

I’ve used a ? to denote our new inner prouct. After you get used to 4-
vectors and their inner products, from the next chapter, we will dispense
with these notational crutches and just write this quantity as A · B or even
just AB. In more advanced texts, this is done with no apology. See the
panel for “index notation” and additional comments on notation.
The inner product of two 4-vectors is invariant under Lorentz transforma-

tions:
=⇒
A′ ?

=⇒
B′ =

=⇒
A ?

=⇒
B . To show this, let’s use matrix notation and

the metric tensor to rewrite the inner product as

=⇒
A ?

=⇒
B = ATgB

where B is a column matrix or column vector — a 4× 1 object. Clearly
AT is a row vector. Under a Lorentz transformation Λ, the inner product



p. 10 Introducing 4-vectors

A common notation used for the Minkowski inner product of 4-vectors A and B is:
AµBµ, or AµBµ. This “index notation” will be introduced in a later chapter. For now,
it will occassionally be useful to write the inner product as AµBµ or AµBµ. Similarly,
the norm of a 4-vector A is Aµ Aµ or Aµ Aµ.
This is more or less universally understood notation for inner products and norms of
4-vectors. However, since we have not explained index notation yet, we will mingle
this with the ? and thick-vector notation for now. The ? and thick-vector notation is
NOT standard, and is used here as a temporary instrument until you get comfortable
with 4-vectors.

becomes
=⇒
A′ ?

=⇒
B′ =

(
A′
)T gB′ = (ΛA)T g(ΛB) =

(
ATΛT

)
gΛB

= AT
(

ΛTgΛ
)

B

{
using associativity of
matrix multiplication

= ATgB

{
using the defintion of
Lorentz transformations

=
=⇒
A ?

=⇒
B .

It’s almost as if the defintion of the inner product was designed to exploit
the definition of the Lorentz transformation so that inner products could
be invariant under LT’s. (In fact, it was so designed.)
For 3-vectors, the magnitude (or norm) of a vector is naturally expressed
in terms of the inner product:

∣∣∣~A∣∣∣ = √
~A · ~A. We define the norm of a

4-vector by analogy:

Definition: Norm of a 4-vector

The norm of a 4-vector (A0, A1, A2, A3) is its inner product with it-
self: (A0)2 − (A1)2 − (A2)2 − (A3)2. This is a Lorentz scalar.

We could have tried to define the norm with a square root, as is common
for Euclidean vectors. But for 4-vectors, the inner product of a vector with
itself can be negative. Taking square roots would therefore be clumsy and
is best avoided.
Since the norm of a 4-vector is a Lorentz invariant (scalar), whenever we
meet a 4-vector, we can infer a corresponding invariant. In the next sec-
tion, as we list or construct a number of physical 4-vector quantities, we
will construct an invariant for each of them.

2.3.1 The really bad news — Dependence on metric convention

I have some bad news.
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Our definitions of the inner product and the metric have assumed the
negative-trace metric: the diagonal elements of g are (1,−1,−1,−1). With
the other metric convention (positive-trace metric), the signs would be re-
versed: the inner product would be −A0B0 + A1B1 + A2B2 + A3B3 and
the norm would be −(A0)2 + (A1)2 + (A2)2 + (A3)2.
The inner product has the form ATgB. When the sign of g is flipped, the in-
ner product acquires an overall negative sign. So, whether an inner prod-
uct (or a norm) is positive or negative depends on the choice of metric.
The really bad news is that this notational ambiguity will continue to tor-
ment you as long as you study relativity or any physics based on it. Most
but not all texts on quantum field theory use the negative-trace metric;
most but not all texts on general relativity use the positive-trace metric.
Due to this lack of consensus on convention, the experience of compar-
ing a definition or formula in two different texts can range from mildly
annoying to utterly nightmarish. I am so sorry.


