
p. 1 Standard boost: derivations of LT

1 This writeup

In this writeup, the Lorentz transformations are derived for a standard
boost, in three different ways.
The ‘standard’ configuration: Frames Σ′ and Σ are coincident at time t =
t′ = 0 and their relative motion is in the common x, x′ direction.
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We consider the relativistic transformation connecting the same event ob-
served from the two frames. This is an example of a Lorentz transfor-
mation. Lorentz transformations in general can include relative rotations
between the two frames in addition to a boost (relative motion). The stan-
dard configuration contains two frames with a relative boost only. We
refer to this transformation as the standard Lorentz boost.
For the standard configuration (representing a pure boost in the x direc-
tion), the Lorentz transformation between time and space coordinates is

ct′ = γv

(
ct− v

c
x
)

(1)

x′ = γv

(
x− v

c
ct
)

(2)

y′ = y (3)
z′ = z (4)

with
γv =

1√
1− v2/c2

2 Deriving the LT: Preliminaries

We want to now derive the transformation equations for the standard
configuration, i.e., the equations relating the coordinates (ct, x, y, z) and
(ct′, x′, y′, z′) for the same event as measured from frame Σ and from frame
Σ′.
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It is reasonable to suppose that the transverse directions are unaffected,
i.e., y′ = y and z′ = z. This can be argued by considering a thought exper-
iment in which observers in Σ and Σ′ use identically constructed sticks to
create marks on a wall at a certain height as they pass by it; one can then
argue a contradiction if the marks are not at equal height. We thus only
have to relate (ct′, x′) to (ct, x). The transverse spatial coordinates are only
along for the ride.
A second observation is that the transformation from (ct, x) to (ct′, x′)
must be linear. If not, a body observed from Σ to have constant velocity
will be observed from Σ′ to have acceleration, i.e., there would be fictitious
forces felt in either Σ, or Σ′, or both. This violates the tenet that physics
is identical in all inertial frames. Thus, we can expect the transformation
equations to look like

ct′ = Act + Bx , x′ = Dct + Ex . (5)

We now have to simply find the four constants A, B, D and E. The con-
stants are expected to be functions of v and c, but (to preserve linearity).
We know what these transformations should look like in the limit v → 0:
they should reproduce the Galiliean transformations, ct′ = ct, x′ = x −
vt =

(
− v

c
)

ct + x. This limit, together with dimensional considerations,
could be used to restrict the transformations further. However, we will
use something more direct: the definition of the standard configuration is
that frame Σ′ moves with speed v in the x-direction with respect to Σ, and
that the origins coincided at t = t′ = 0. Thus the origin of Σ′ must satisfy
x = vt (seen from the Σ frame); since this point is defined as x′ = 0, we get

0 = Dct + E(vt) =⇒ E = − c
v

D

so that the transformations are

ct′ = Act + Bx , x′ = Dct− c
v

Dx . (6)

Note that the second equation now has the form x′ = −D c
v (x− vt), so it’s

easy to imagine this reducing to the Galilean form for small v, provided
that D → − v

c as v→ 0. We now have only three constants to determine.
To obtain these constants, we can impose the fact that the invariant interval
is invariant: c2dt′2 − dx′2 = c2dt2 − dx2. For the standard configuration,
this also means

c2t′2 − x′2 = c2t2 − x2 (7)

because the origins of the two frames coincide at t = t′ = 0. Using this re-
quirement straightforwardly gives the constants we are after. This is done
in three different ways below. They achieve the same purpose but it is
instructive to go through each; in particular the 3rd derivation introduces
infinitesimal transformations, an important idea.
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3 Derivation 1: Brute force

Our first derivation is a bit “brute-force”-ish and will win no prizes for
elegance. Simply take the transformation equations (6) with unknown co-
efficients, and plug them into the equation (7) for the invariant interval.

(Act + Bx)2 − (Dct− Dcx/v)2 = c2t2 − x2

Equating coefficients gives

A2 − D2 = 1, D2(c/v)2 − B2 = 1, AB + D2(c/v) = 0.

We have three equations for three coefficients, so obtaining the coefficients
is now strakghtforward, although admittedly a bit tedious. When solving,
I strongly suggest use β = v/c to simplify the clutter while solving.
The equations involve squares of D and A, so the signs are not uniquely
determined from this set of equations, but from the requirement that A→
1, D → − v

c at small v (Galilean transformations), we can infer that A and
D should respectively be positive and negative. The solutions are

A =
1√

1− v2/c2
, B =

−v/c√
1− v2/c2

, D =
−v/c√

(1− v2/c2)

So the transformation equations are

ct′ =
ct− vx/c√
1− v2/c2

, x′ =
x− vt√

1− v2/c2

We now have clear reason to define

γv =
1√

1− v2/c2

so that the derived Lorentz transformations are

ct′ = γv(ct− vx/c), x′ = γv(x− (v/c)ct),

and of course y′ = y, z′ = z.
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4 Derivation 2: Light cone coordinates

This derivation is a bit more elegant.
Let’s define the coordinates

x± = ct± x

which are known as ‘light cone’ coordinates. The invariant interval is then

ctdt2 − dx2 = dx+dx−

This quantity is invariant under the transformation. Thus if the transfor-
mation decreases x+ by some factor it needs to increase x− by the same
factor. Call this factor eφ:

x′+ = e−φx+, x′− = eφx−.

Then

ct′ = 1
2(x′+ + x′−) = 1

2(e
−φx+ + eφx−)

= 1
2(e
−φ(ct + x) + eφ(ct− x)) = cosh φct− sinh φx

and similarly x′ = − sinh φct + cosh φx. Here sinh φ = 1
2(e

φ − e−φ) and
cosh φ = 1

2(e
φ + e−φ) are the hyperbolic sine and hyperbolic cosine func-

tions.
We have obtained the transformation equations(

ct′

x′

)
=

(
cosh φ − sinh φ
− sinh φ cosh φ

)(
ct
x

)
in terms of the variable φ, which we still have to relate to v/c.
Comparing with Eq. (6), x′ = Dct− (c/v)Dx, we get

tanh φ =
v
c

which leads to

cosh2 φ =
1

1− tanh2 φ
=

1
1− v2/c2 = γ2

v

and

sinh2 φ = cosh2 φ− 1 =
1

1− v2/c2 − 1 =
v2/c2

1− v2/c2 = γ2
v

v2

c2

The requirement of reducing to the Galilean transformations for small v
implies that cosh φ and sinh φ are both positive; thus cosh φ = γv and
sinh φ = γv(v/c).
We have thus re-derived the transformation equations for the Lorentz boost
in standard configuration:

ct′ = γv(ct− vx/c), x′ = γv(x− (v/c)ct),

The variable φ is known as the rapidity.
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The derivation of LT using light cone coordinates
mirrors the following derivation of the
transformation matrix for rotations:
Rotation preserves x2 + y2. Defining z = x + iy,
this means |z′|2 = |z|2 or z′z′∗ = zz∗. So z′ can
differ from z only by a phase. Try z′ = ze−iζ ,
z′∗ = z∗eiζ ; then

x′ =
1
2
(
z′ + z′∗

)
=

1
2

(
ze−iζ + z′∗eiζ

)
=

1
2

(
x
[
e−iζ + eiζ

]
+ iy

[
e−iζ − eiζ

])
= x cos ζ + y sin ζ

and similarly y′ = −x cos ζ + y sin ζ.

This is the imaginary version
of our derivation 2 using light
cone coordinates. 1+1
dimensional Lorentz boosts are
very much like 2-dimensional
rotations, except for the
occational minus sign or factor
of i.
Can we interpret ζ as the angle
of rotation? That would require
additional input. (Of course,
we know from other
derivations that ζ is the angle
of rotation)

5 Derivation 3: Infinitesimal boosts

This derivation will use matrix language. This will be elegant in a different
way, and seemingly a bit roundabout, but the detour will be instructive.
As a bonus we will learn a technique — focusing on infinitesimal transfor-
mations — that is at the heart of the study of Lie groups.

5.1 Formulate as a matrix

Since we are after the transformation that gives (ct′, x′) in terms of (ct, x),
we need a 2× 2 matrix, which we call Λ:(

ct′

x′

)
= Λ

(
ct
x

)
(8)

Of course, a full Lorentz transformation is a 4× 4 matrix, but in this case,
the perpendicular spatial directions are untouched by the transformation.
This is the simplicity gained by focusing on the standard configuration.
A sophisticated-sounding way of saying this: we are restricting to 1+1
dimensional spacetime.
We now try to express the invariance of our familiar ‘interval’ in matrix
language, in particular, as a condition on Λ. Noting that

c2t2 − x2 =
(
ct x

) (1 0
0 −1

)(
ct
x

)
, (9)

it seems useful to give a name to the matrix
(

1 0
0 −1

)
. Its extension to 4

dimensions is called the metric tensor. For now, we will refer to this 2× 2
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matrix as the metric tensor

g =

(
1 0
0 −1

)
.

(If you have had some quantum mechanics, you would also recognize this
matrix as the third Pauli matrix σz or σ3.)
Eq. (8) implies

(
ct′ x′

)
=

(
ct x

)
ΛT, where ΛT is the transpose of Λ.

The invariance of c2t2 − x2 thus means(
ct x

)
ΛTgΛ

(
ct
x

)
=
(
ct x

)
g
(

ct
x

)
Since this is true for any event (ct, x), it implies

ΛTgΛ = g

This is the condition that the transformation matrix Λ must satisfy.

5.2 Focus on an infinitesimal piece

Having formulated the problem as a matrix
The trick of considering
infinitesimal transformation
is a common trick in the
study of Lie groups. This
trick is due to Sophus Lie,
after whom Lie algebra and
Lie groups are named.

condition, we first try to find the transforma-
tion matrix for an infinitesimal boost. Noting
that Λ is the unit matrix for the case of zero
velocity (zero boost), it makes sense to try

Λ(ε) =

(
1 0
0 1

)
+ εK = I + εK

Here K is a 2× 2 matrix which we will try to
determine. Here ε is an infinitesimal quantity, proportional to the velocity
provided both ε and v are small. The matrix K (sans a conventional factor
of i) is called the generator of the set of 1-dimensional Lorentz boosts.
Inserting Λ = I + iεK into the invariance condition

You could define

K =

(
k1 k2
k3 k4

)
and use it in the
condition
KTg + gK = 0.
This leads to
k1 = k4 = 0 and
k2 = k3.

and retaining only leading terms in ε, we get

KTg + gK = 0

This is the condition for our infiniteslimal boost to
obey the invariance of the interval ∆τ. This equa-
tion is satisfied by matrices of the form (see panel)

K =

(
0 k2
k2 0

)
. We can choose k2 = 1 without loss of

generality, since any constant factor can be abosrbed

in the definition of ε. Then an infinitesimal boost would be Λ =

(
1 ε
ε 1

)
.
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However, we expect the off-diagonal terms in the transformation matrix
to have negative sign, in order to connect to the Galilean transformations
for in the c→ ∞ limit. So it makes more sense to choose

K =

(
0 −1
−1 0

)
; Λ(ε) =

(
1 −ε
−ε 1

)
This choice might feel like looking ahead unfairly, but you don’t really
have to cheat — the derivation will work out correctly with any choice of
k2.
Let’s celebrate: we have obtained the generator and the form of the in-
finitesimal Lorentz boost!

5.3 From the infinitesimal to the finite boost

How do we get a finite boost from an infinitesimal one? Easy, we just apply
the tiny boost successively as many times as we need it. Imagine that we
need to apply it N times to obtain a boost of finite strength ζ = Nε. Thus

Λ(ζ) = Λ(ε)λ(ε)λ(ε) . . . λ(ε) = [λ(ε)]N .

I am being a bit cavalier here, since ε is infinitesimal and ζ is finite, we
need the N → ∞ limit, but this will not be a problem. Now note that
I + εK = eεK because ε is infinitesimal, so that Λ(ζ) =

[
eεK]N

= eζK.
Thus we have found the boost transformation

Λ(ζ) = exp[ζK] = exp
(

0 −ζ
−ζ 0

)
We don’t yet know how to interpret ζ; is it maybe proportional to the
velocity v? To find out, we expand out the exponential and obtain series

Here’s a more picturesque path
from the infinitesimal boost K to
the finite boost eζK:

Λ(ζ) ∼ λ(ε)N ∼
(

I +
ζ

N
K
)N

.

Since ε is infinitesimal, this is exact
in the limit N → ∞:

Λ(ζ) = lim
N→∞

(
I +

ζ

N
K
)N

This is a famous representation of
the exponential function (right
panel). Thus Λ(ζ) = eζK.

To physics students, y = limN→∞
(
1 + x

N
)N is

not the best known represetntation of the
exponential function y = ex. To derive, expand in
a binomial series. The N-dependence in each term
cancels for N → ∞, leaving

y = 1 + x +
x2

2!
+

x3

3!
+ · · · = ex

Each of these steps also works if x is a matrix; we
are using this result for the matrix ζK.
What is the exponential of a matrix? It is
generally defined as the series ∑ xm

m! used above.
The same definition is used for the exonential of
operators in quantum mechanics.
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in ζ for each element; the result is

Λ(ζ) =

(
cosh ζ − sinh ζ
− sinh ζ cosh ζ

)
.

We can now relate ζ to v/c by comparing with Eqs. (5). However, com-
paring with the previous derivation, we recognize that ζ is exactly the
rapidity φ = tanh−1(v/c). Obtaining the boost transformation in terms of
the speed is now the same steps as in the previous derivation; we won’t
repeat.

If we had chosen K to be
(

0 1
1 0

)
, we would have had ζ = −φ, but would

end up with the same Lorentz boost equations. With our choice, ε has the
interpretation of an infinitesimal rapidity. (This is the same as an infinites-
imal (v/c), as limx→0 tanh x = x). However, the perhaps artificial-looking
choice of k2 = −1 is not necessary for the derivation; please feel free to de-
rive the boost equations using another choice of k2. In that case, ε would
be the infinitesimal boost divided by whatever constant you defined k2 to
be.


