
p. 1 Rotation group, Lorentz group, Poincaré group

1 The Rotation group

1.1 2D rotations

Consider all possible rotations around the z axis. These transform the pla-
nar coordinates (x, y) according to transformation matrices of the form

R2 =

(
cos θ − sin θ
sin θ cos θ

)
with the real number θ representing the angle of rotation. These matrices
are orthogonal and have unit determinant. The set of these matrices form
a group under group multiplications. (Equivalently, the set of rotations
around the z axis form a group of transformations.) This group is known
as SO(2).
Sometimes the rotation group is defined to include reflections. This means
the set of all orthogonal 2× 2 matrices, not only those with determinant
= +1. Imagine reflecting around the y axis, a transformation represented

by P =

(
−1 0
0 1

)
. ( Please check! ) If we consider all matrices of the form

PR2 =

(
−1 0
0 1

)(
cos θ − sin θ
sin θ cos θ

)
=

(
− cos θ sin θ

sin θ cos θ

)
then these represent a reflection plus a rotation within the x-y plane. These
matrices have determinant −1 and are also orthogonal.
The larger set containing all orthogonal matrices — those with positive
determinant and those with negative determinant — is called O(2). The
S is missing in this name — S stands for ‘special’, meaning determinant
exactly +1.
The group O(2) has two ‘disjoint’ pieces — one containing matrices with
determinant +1, known as SO(2), and the other containing the rest of the
matrices, whcih have determinant −1. This piece of O(2) does not have a
name.
The unit matrix is contained within SO(2). All elements of SO(2) are con-
tinuously connected to the identity element (unit matrix), as you can tune
θ continously to zero to turnR into the identity matrix.
The negative-determinant part of O(2) does not contain the unit matrix,
and these matrices cannot be continuously deformed into the unit matrix.
To obtain the unit matrix from PR, one has to tune θ but also multiply
by P, i.e., reflect, which is a violent discontinuous operation. This part of
O(2) does not form a group under matrix multiplication, as it misses an
identity element.
SO(2) is a simpler group than those we will meet later. The multiplication
of two matrices corresponding to rotation angles θ1 and θ2 results in an-
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other SO(2) matrix of rotation angle θ1 + θ2. So simple. Because addition
of angles is a commutative operation, multiplication of SO(2) matrices
must be commutative as well. This is an abelian group.

1.2 3D rotations

The set of all 3D rotations is known as SO(3). This is a non-abelian group.
It is the set of orthogonal 3× 3 matrices whose determinant is +1.
If reflections are included, we obtain the larger group O(3), which is the
set of all orthogonal 3× 3 matrices. Just as we had in the two-dimensional
case, this means including matrices with determinant −1. The identity
matrix belongs to SO(3) and is continuously connected to the members of
SO(3), but is not continuously connected to negative-determinant mem-
bers of O(3).
The group O(3) can be defined as the set of 3× 3 matrices which, acting
on 3-vectors (x1, x2, x3), preserves the norm(-squared)

~x ·~x = (x1)
2 + (x2)

2 + (x3)
2 .

Equivalently, it is the set of 3× 3 matrices which are orthogonal.

1.3 n-dimensional rotations

Clearly, this is straightforwardly generalized: O(n) is the set of n× n ma-
trices which, when acting on n-vectors (x1, x2, . . . , xn), preserves the quan-
tity

(x1)
2 + (x2)

2 + . . . (xn)
2 =

n

∑
j=1

(
xj
)2 .

Restricting to those elements which have positive determinant (= +1), we
get the subgroup SO(n).
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2 Lorentz group

The Lorentz group is introduced and discussed in a series of statements
and observations below. Hopefully you will find that you already know
some of these things.

• A fundamental property of Lorentz transformations is the invariance
of xµxµ = c2t2 − x2 − y2 − z2. An equivalent statement is that Lorentz
transformation matrices satisfy

ΛTgΛ = g . (1)

Formally, any transformation Λ satisfying Eq. (5) is a Lorentz transfor-
mation.

• The set of matrices satisfying Eq. (5) is called the Lorentz group.

One can show that this set of matrices obey all four aspects of the math-
ematical definition of a group, under the operation of matrix multipli-
cation.

• Looks like we just defined the Lorentz group as a group of matrices.
Physically, of course, the Lorentz group is the group of transformations
represented by these matrices. The group operation (matrix multiplica-
tion) corresponds to successive application of transformations.

For example, if Λ1 and Λ2 are matrices representing two Lorentz trans-
formations, then the matrix Λ1Λ2 represents the following transforma-
tion: apply Λ2 first, and then apply Λ1. (Note the order.)

• The metric g in Eq. (5) could be either

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 or g =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

The defining equation (5) is not affected by this choice, since the two g’s
differ only by a sign.

The negative signature metric is preferred in particle physics and quan-
tum field theory, while the positive signature metric is preferred in gen-
eral relativity. We’ve mostly used the first, in this semester.

• The Lorentz group, as defined, includes also reflections of time and re-
flections of space. These are not very physical transformations. If we
omit these, we obtain the set of PROPER ORTHOCHRONOUS transfor-
mations, or the set of physical Lorentz transformations. This restricted
set itself forms a group, known as the restricted Lorentz group.
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• The sign of the time coordinate gets flipped by an LT if Λ0
0 is negative.

A Lorentz transformation that retains the sign of the time coordinate is
called orthochronous.

We will show later that
∣∣Λ0

0
∣∣ ≥ 1, i.e., values of Λ0

0 between −1 and
+1 are excluded.

Thus a Lorentz transformation Λ is

orthochronous if Λ0
0 > 1,

non-orthochronous if Λ0
0 < −1.

I hope you like the word ‘orthochronous’; you can impress your friends
and relatives with it. To the best of knowledge, the word has only this
meaning and does not mean anything else in other contexts. (Sigh of
relief.)

• Proper and improper:

You can show from the definition (5) that the determinant-squared of
an LT is 1, so that det Λ is either +1 or −1. The LT is proper if det Λ = 1
and improper if det Λ = −1.

This terminology is the same as that used for 3 × 3 rotation matrices
R. If detR = −1, the matrix represents a reflection in addition to a
rotation.

In the case of LT’s, det Λ = −1 can mean either spatial reflection or
temporal reversal. But not both: A Lorentz transformation that involves
both time reversal and spatial reflection will have det Λ = +1 and hence
is ‘proper’. Of course, you would probably not regard this transforma-
tion as being physical, despite the name proper.

• The matrix

T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


represents the operation of time reversal, as you can see by applying it
to a spacetime coordinate (ct, x, y, z). It is a valid Lorentz transformation
according to the definition (5). ( Please check! )

The matrix

P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


represents the operation of spatial reflection, also known as a PARITY
TRANSFORMATION. This is also a valid Lorentz transformation.
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Note that the matrices T and P look formally identical to the metric
tensor g or its negative. This does not have any physical meaning, as g
does not represent a transformation.

• The unit matrix is a member of the Lorentz group defined by Eq. (5) and
hence represents a valid Lorentz transformation.

What transformation does the unit matrix represent? The do-nothing
transformation, of course. It’s the transformation that takes you from
the spacetime coordinates measured from frame Σ to the spacetime co-
ordinates measured from the same frame Σ.

The unit matrix is a proper and orthochronous LT. ( Please check. )

• Members of the restricted Lorentz group, i.e., the proper orthochronous
Lorentz transformations, are connected continuously to the unity ma-
trix. Those LT’s which involve flipped temporal or spatial coordinates
are NOT continuously connected to the unit matrix.

Thus, the Lorentz group can be broken into four disjoint pieces, illus-
trated in the table:

Λ0
0 > 1

ORTHOCHRONOUS

Λ0
0 < 1

NON-
ORTHOCHRONOUS

det Λ = +1

PROPER
Λ(p.o.) TPΛ(p.o.)

det Λ = −1

IMPROPER
PΛ(p.o.) TΛ(p.o.)

We can’t list all the elements in each of the four blocks; so we have
labeled them with representative matrices. Here Λ(p.o.) is an arbitrary
proper orthochronous Lorentz transformation, i.e., a representative of
the set of physical Lorentz transformations. The top left block repre-
sents all transformations continuously connected to this one, i.e., the
whole set of physical Lorentz transformations. The lower left block rep-
resents all transformations continuously connected to PΛ(p.o.), which is
the matrix obtained by reflecting the spatial components of Λ(p.o.). You
should be able to guess the definitions of the other two blocks.
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The identity matrix belongs to the top left segment of the Lorentz group.
Thus, the other blocks in the table cannot form groups by themselves —
they lack the identity element.

• The Lorentz group is represented as O(3, 1) or O(1, 3). The numbers
show that one of the components is treated specially, i.e., that one of the
diagonal elements of the 4× 4 metric tensor has opposite sign.

The subset of the Lorentz group that is proper is also a group.

Exercise: Show that this subset satisfies closure, i.e., that the prod-
uct of any two LT matrices having determinant +1 is also an LT
matrix having determinant +1.

The proper Lorentz group consists of the two upper blocks in the table
above. This group is called SO(3, 1). The ‘S’ stands for ‘special’, mean-
ing positive determinant.

If we further restrict to transformations that are both proper and or-
thochronous, we obtain the restricted Lorentz group. This is the top left
block in the table. This group is represented by the very fancy name
SO+(3, 1). The superscript + indicates that time is moving forward, in
the physically meaningful direction.

Most people would think of SO+(3, 1) as the class of physical transfor-
mations. Sometimes, when people say ‘Lorentz transformations’, they
might mean only this class of transformations, leaving out most of the
full Lorentz group. As always, you have to figure out from the context
what is meant.

I have also seen the notation SO(3, 1)↑ or SO↑(3, 1) used for the re-
stricted (physical) Lorentz group, i.e., using a ↑ instead of a + symbol
as superscript.

• Showing that
∣∣Λ0

0
∣∣ ≥ 1

We’ve claimed this inequality previously; let’s prove it.

The defining relation (5) can be written in tensor-index notation as

Λµ
α Λν

β gµν = gαβ
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Let’s focus on the values α = β = 0:

Λµ
0Λν

0gµν = g00

=⇒
(

Λ0
0

)2
−

3

∑
i=1

(
Λi

0

)2
= 1

=⇒
(

Λ0
0

)2
= 1 +

3

∑
i=1

(
Λi

0

)2
≥ 1

=⇒
∣∣∣Λ0

0

∣∣∣ ≥ 1

3 Boosts and rotations

The restricted Lorentz group contains BOOSTS and ROTATIONS and com-
binations of the two.

• Boost matrices are SYMMETRIC.

• Two successive boosts result in a pure boost only if they are in the same
direction. For example, consider a boost in the x direction followed by
another boost in the x direction.

γv2 −γv2

( v2
c
)

0 0
−γv2

( v2
c
)

γv2 0 0
0 0 1 0
0 0 0 1




γv1 −γv1

( v1
c
)

0 0
−γv1

( v1
c
)

γv1 0 0
0 0 1 0
0 0 0 1



=


γw −γw

(w
c
)

0 0
−γw

(w
c
)

γw 0 0
0 0 1 0
0 0 0 1

 with

w =
v1 + v2

1 + v1v2/c2

You know this already, but if you don’t remember, you should try mul-
tiplying and showing this. Physically, this means considering a trans-
formation from frame Σ to frame Σ′ (relative speed v1), and then from
Σ′ to Σ̃ (relative speed v2), when all three are in standard configuration,
i.e., relative motion in the common x, x′, x̃ direction. The net transfor-
mation obtained by matrix multiplication is the transformation from Σ
to Σ̃. The relative speed between frames Σ and Σ̃ is of course not v1 + v2
but rather (v1 + v2)/(1 + v1v2/c2).

• However, when we apply successively boosts in different directions, we
do not obtain a pure boost. For example,

γv2 0 −γv2

( v2
c
)

0
0 0 1 0

−γv2

( v2
c
)

0 γv2 0
0 0 0 1




γv1 −γv1

( v1
c
)

0 0
−γv1

( v1
c
)

γv1 0 0
0 0 1 0
0 0 0 1
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turns out to be a non-symmetric matrix. Thus a boost applied in the x
direction, followed by a boost applied in the y direction, does not result
in a pure boost.

This shows that Lorentz boosts do not form a group by themselves. Ro-
tations are needed to complete the group, i.e., to make the set of trans-
formations satisfy closure.

• Pure rotations satisfy the ΛTgΛ = g condition, i.e., belong to the Lorentz
group.

IfR is a 3× 3 rotation matrix, then the 4× 4 matrix

L =


1 0 0 0
0
0 R
0

 (2)

satisfies LTgL = g, because the spatial part of this equation is simply
RT(−I)R = −I, i.e.,RTR = I, which we know is true because rotation
matrices are orthogonal.

• Pure rotations form a complete group by themselves. The product of
any two rotation matrices is a rotation matrix, i.e., successive applica-
tion of two rotations is itself a rotation.

This is in contrast to boosts, which do not satisfy group completion by
themselves.

• Symbolically:

Restricted Lorentz group = boosts + rotations

and
Lorentz group = boosts + rotations + T + P

• Decomposition theorem: any orthochronous, proper Lorentz transfor-
mation can be decomposed into a pure boost and a pure rotation, in
either order.

In other words, if Λ satisfies Eq. (5), and is proper+orthochronous, then
we can write it as

Λ = B(1)L(1)
R and also as Λ = L(2)

R B(2),

where B(1),(2) are pure boost matrices and L(1),(2)
R are rotation matrices

of the form of Eq. (6). The labels (1) and (2) indicate that the order of
decomposition in general produce different boost and rotation matrices.
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• Wigner rotation and Thomas precession.

We have learned that successive application of two non-collinear boosts
results in a LT that is not a pure boost — instead, it is a composition of
a boost and a rotation. This rotation is called Wigner rotation, Thomas
rotation, or Thomas-Wigner rotation.

(Named after Eugene Wigner and Llewellyn Thomas.)

Imagine an object in high-speed rotation around an orbit, such as an
electron around an atomic nucleus. The rotation might be seen as a se-
quence of many non-collinear boosts, after a period returning the elec-
tron to its original velocity. Each combination of boosts in different di-
rections creates a rotation of frame, which can combine into a net ro-
tation per orbit. This results in the spin axis of the electron rotating in
space, i.e, a precession of the internal angular momentum. This phe-
nomenon is known as Thomas precession.

4 Collinear boosts, Commutativity

If we consider only collinear boosts, say boosts in the x direction, then we
get a closed subset of the Lorentz group which itself is a group. The subset
satisfies closure because, if you successively boost in the x direction, the
result is a net boost in the x direction.
In much of this semester, we’ve focused on this subgroup, Inertial frames
in what we called “standard configuration” are connected by transforma-
tions which are members of this group.
This subgroup can be described as the set of 2× 2 matrices Λ which satisfy
ΛTgΛ = g. While this formally looks like Eq. (5), here the matrices are

2× 2 (not 4× 4), and g =

(
1 0
0 −1

)
.

This subgroup is known as O(1, 1). If we restrict to proper boosts, we
obtain the smaller group SO(1, 1). If we also leave out the time-flipping
matrices, we get SO+(1, 1).
Relativistic addition in the same direction is a commutative operation;
hence successive standard boosts commute. Thus O(1, 1) and SO+(1, 1)
are commutative (abelian) groups.
This is in contrast to O(1, 3) and SO(1, 3) and SO+(1, 3). Boosts in different
directions do not commute. A boost generally does not commute with a
rotation. Even rotations do not commute if they have different rotation
axes. SO+(1, 3) is very definitely a non-abelian group.
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y

x

x'

y'

Figure 1: The frame Σ′ is obtained by both rotating and translating Σ. For
simplicity of drawing, in this example the rotation is around the z axis and
the translation is in the x-y plane.

5 Poincaré group

5.1 Euclidean background

In 3D Euclidean physics, you know that rotations by themselves form a
group: SO(2) for rotations around a fixed axis, and SO(3) for arbitrary
rotations in 3-space. If we include parity flipping (reflections), we have
the larger groups O(2) and O(3).
Now, it turns out that rotations + translations together also form a group.
This is known as the Euclidean group, because it is the set of all transfor-
mations of Euclidean space which preserve the Euclidean distance. The
n-dimensional Euclidean group is often written as E(n). It contains the
rotation group O(n) as a subset, i.e., as a subgroup.
We consider the combination of a rotation and a translation of the reference
frame, for example as shown in Figure 3. Such a transformation changes
the coordinantes ~x of a point to ~x′ as follows:

~x′ = R~x + ~A (3)

whereR is a 3× 3 rotation matrix and ~A is a 3-displacement vector.
Eq. (7) is linear but alas not homogeneous, i.e., it is not expressed as a
matrix-vector multiplication alone, but also needs an additive term, ~A.
In other words, such a transformation is not described by a 3× 3 matrix
alone. Instead, we need the pair (R, ~A) to describe such a general trans-
formation.
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Exercise: In Figure 3 or on a similar diagram, identify the distances
Ax and Ay. Which of them are negative?
This can be tricky. Remember that the rotation is applied before
the translation. Also remember that we are concerned with passive
transformations — not how the frames change, but how the coordi-
nates relative to these frames change.

Is it clear that the set of transformations (R, ~A) is a group? Let’s examine
the conditions required for a group.

• Closure: It seems physically clear that applying two such transforma-
tions would produce a net transformation that is a combination of a
rotation and a translation. To prove this, apply (R1, ~A1) and (R2, ~A2)
successively to a displacement vector~x, and show that the net result can
be put in the form (R3, ~A3), for some (R3, ~A3).

Exercise: Show. ExpressR3 and ~A3 in terms ofR1, ~A1,R2, ~A2.

If you want, we could invent some notation for this. For example, we
could write

(R3, ~A3) = (R2, ~A2)� (R1, ~A1)

to mean that applying (R1, ~A1) and then (R2, ~A2) produces the net
transformation (R3, ~A3). This is not standard notation. You can use
something else other than �, or just place transformations one after an-
other without any symbol between them.

• Identity: You should be able to identify the combination of R and ~A
which keep the coordinates unchanged. ( Exercise! )

Physically, this is the do-nothing transformation or non-transformation.

• Inverse: Geometrically, it’s clear that if you take Σ to Σ′ by rotating and
then translating, you should be able to get back to Σ by rotating and
translating.

Exercise: Given a transformation (R1, ~A1), find the transforma-
tion which, combined with this, gives the identity transformation.

• Associativity: This needs some work. In previous cases that we have
met, the transformations (group elements) could be expressed as ma-
trices, so that combining transformations meant matrix multiplication.
Matrix multiplication is known to be associative, so combining the trans-
formations was automatically associative.
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ct

x

x'

ct'

Figure 2: The frame Σ′ is obtained from Σ by a Lorentz transformation
plus a spacetime translation.

Now, however, the transformation is not represented by a matrix! So
you have to show that[
(R3, ~A3)� (R2, ~A2)

]
� (R1, ~A1) = (R3, ~A3)�

[
(R2, ~A2)� (R1, ~A1)

]
using what you have previously worked out for the composition of two
groups.

Exercise! Please show associativity.

5.2 Poincaré transformations

In Minkowsi space, a transformation of spacetime coordinates of the form

X̃µ = Λµ
νXν + aν (4)

is known as a Poincaré transformation. This involves a Lorentz transfor-
mation Λ and a shift/displacement of space-time coordinates.
When studying Lorentz transformations, we have taken care to insist that
the origins of the inertial frames involved all coincide at the common zero
time. This guaranteed that the Lorentz transformation is a homogeneous
transformation.
In contrast, a Poincaré transformation can include a shift of the spacetime
origin. If the transformation is from inertial frame Σ to frame Σ̃, then the
spacetime origin of the first frame, (ct, x, y, z) = (0, 0, 0, 0), does NOT coin-
cide with the spacetime origin of the second frame, (ct̃, x̃, ỹ, z̃) = (0, 0, 0, 0).
A Poincaré transformation might contain a rotation or a boost or any com-
bination, plus a shift of spatial origin or/and the zero of time. It is a rich
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set of transformations! In Figure 4, we have represented using a spacetime
diagram a particular Poincaré transformation, namely: one involving an
LT that is a pure boost in the x direction, and a shift only in the time and x
coordinates. The group considered in the previous subsection (Euclidean
rotations + spatial translations) and members of the Lorentz group, are all
also included in Poincare transformations.
As Eq. (8) is not homogeneous (although linear), it cannot be expressed by
a 4× 4 matrix alone. We need a 4× 4 LT matrix plus a spacetime 4-vector
to express the transformation, e.g. (Λ, a).
Do the set of Poincaré transformations form a group? As in the previous
subsection, this is not obvious to see; in particular associativity has to be
checked properly. The calculations are formally quite similar to the ones in
the previous subsection, for the group containing 3D rotations and spatial
translations. The difference is that the transformations we are now con-
sidering act on members of 4D Minkowski space. It turns out that all four
group properties are satisfied. The Poincaré group is in fact of fundamen-
tal importance in our understanding of nature.
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6 Infinitesimal transformations and generators

Early in the semester, we considered infinitesimal boosts in a single di-
rection, and hence found the form of a SO(1, 1) matrix, i.e., the form of a
standard boost.
Writing Λ = I + εK, where the matrices are 2× 2, we determined the form
of K from the condition ΛTgΛ = g. This was enough to infer the form of
finite matrices. The matrix K is the generator of SO(1, 1).
It is understandable that SO(1, 1) has a single generator, as it is a one-

parameter family of matrices, e.g.,
(

cosh φ − sinh φ
− sinh φ cosh φ

)
, parametrized by

the family φ.
Similarly, you could consider SO(2), the set of 2D rotations R2, which
satisfy RT

2R2 = I. Defining an infinitesimal rotation R2 = I + εJ, you
could determine the form of J. Then J would be the generator of SO(2).
Now for larger groups. The group of 3D rotations, SO(3), has three gener-
ators. We could call them J1, J2, J3. This sounds reasonable, as 3D rotations
require three parameters to describe them.
The Lorentz group, SO+(3, 1), contains both rotations and boosts in any
spatial direction. Unsurprisingly, it has six generators, three representing
infinitesimal boosts (K1, K2, K3) and three representing infinitesimal rota-
tions (J1, J2, J3).
Continuous groups are often characterized by looking at the commutation
relations between the generators. Examining the commutation relations
teach us a lot about the structure of the group.


