

Maynooth University

National University of Ireland Maynooth

OLLSCOIL NA hÉIREANN MÁ NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH

MATHEMATICAL PHYSICS

Year 3

Semester 2

2014-2015

Special Relativity MP352

Professor S. Hands, Professor D. M. Heffernan, Dr. P. Watts

Time allowed: $1 \frac{1}{2}$ hours
Answer two questions
All questions carry equal marks

1. Let \mathcal{S} and \mathcal{S}^{\prime} be two inertial frames, with \mathcal{S}^{\prime} moving relative to \mathcal{S} with a velocity of $0.6 c$ in the positive x-direction.
(a) An event has spacetime coordinates $\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ in \mathcal{S}; what are its coordinates $\left(x^{\prime 0}, x^{\prime 1}, x^{\prime 2}, x^{\prime 3}\right)$ in \mathcal{S}^{\prime} ?
(b) Two 4 -vectors A^{μ} and B_{μ} have the following components in \mathcal{S} :

$$
\begin{aligned}
& \left(A^{0}, A^{1}, A^{2}, A^{3}\right)=(1,-1,0,0) \\
& \left(B_{0}, B_{1}, B_{2}, B_{3}\right)=(-1,2,0,1)
\end{aligned}
$$

Compute $\|A\|^{2}$ and $\|B\|^{2}$ and thus identify each vector as either timelike, spacelike or lightlike.
(c) Find A^{μ} and B_{μ}^{\prime}, i.e. the components of the two 4 -vectors in \mathcal{S}^{\prime}.
(d) Using your results from (b) and (c), confirm that

$$
\left\|A^{\prime}\right\|^{2}=\|A\|^{2}, \quad\left\|B^{\prime}\right\|^{2}=\|B\|^{2}, \quad A^{\mu} B_{\mu}^{\prime}=A^{\mu} B_{\mu}
$$

2. Let G be a set and \star be a binary operation on G.
(a) List the four properties that (G, \star) must satisfy in order to be a group.
(b) Let $G=\{(x, m) \mid x>0, m \in \mathbb{Z}\}$ and \star be the operation

$$
(x, m) \star(y, n)=(x y, m+n)
$$

Show that (G, \star) is a group.
3. Let A and B be two particles with rest masses m_{A} and m_{B} respectively, and let X be a massless particle.
(a) Prove that if either m_{A} or m_{B} is nonzero, then the reaction $A+B \rightarrow X$ is impossible.
(b) Show that if $m_{B}>m_{A}>0$, the reaction $A+X \rightarrow B$ is possible and find the resulting energy of B in the rest frame of A.
(c) Suppose both m_{A} and m_{B} are nonzero, and the reaction $A+B \rightarrow X+X$ takes place. If the total centre-of-mass energy is E_{CM}, find the energies of A, B and each X in the centre-of-mass frame.

Solutior to MP 352 Exam, Spriy 2014
P. 1

This pablen tests thenderitandj of not jost Lorotz trow, faters, het also 4 -vectars ad the nototion ve use to describe ten... (a) We und this pativilar truffatio so many thies is lectores tot it's sovetuing at a girmeee questia: if hbost is of speed $M=0.6 \mathrm{c}$ in the $x-$ dimection, then $\gamma(0.6 \mathrm{c})=1.25 \mathrm{ad} s 0$

$$
\left.x^{10}=1.25 x^{0}=0.45 x^{1}, x^{11}=1.25 x^{3}-0.75 x^{0}, x^{12}=x^{2}, x^{13}=x^{3} \quad 16 p+5\right]
$$

(b) A 4-vector rith upper (controscoict) indiaes har a nom-squeal of

$$
\|A\|^{2}=-\left(A^{0}\right)^{2}+\left(A^{\prime}\right)^{2}+\left(A^{2}\right)^{2}+\left(A^{7}\right)^{2}
$$

so for $(1,-1,0)$, u lare $111 y^{2}=0$, ad mus thus $\mid 3 p$ ts| vectu is Tightline. A lover-idex (colvaratat) 4-vectionas 13pis) aveg soug (yth:

$$
\|B\|^{2}=-\left(B_{1}\right)^{2}+\left(B_{1}\right)^{2}+\left(B_{2}\right)^{2}+\left(B_{3}\right)^{2}
$$

$$
\therefore(-1,2,0,1) \text { has }\|\beta\|^{2}=4 \text { ad } 3 \text { tuar Spacelike. (3ptear) }
$$

(c) 4 -veatis wit ypa indeer trator eccady Iice $\left(x^{0}, x^{?}, x 7, x^{3}\right)$.

Thue, usingte fon fra (0), we see at

$$
\begin{aligned}
& A^{\prime 0}=1.25(-1)-0.75(-1)=2 \\
& A^{\prime 1}=1.25(-1)-0.75(1)=-2 \\
& A^{\prime 2}=0 \\
& A^{13}=0
\end{aligned}
$$

Low....ax 4 -vectry tranfm ar frosis of V were revend, ie.

$$
\begin{aligned}
& B_{0}^{\prime}=Y(v)\left(B_{0}+\frac{v}{c} B_{1}\right)=1.2(-1)+0.75(2)=0.28 \\
& B_{1}^{\prime}=r(v)\left(B_{1}+\frac{V}{c} B_{0}\right)=1.2(2)+0.75(-1)=1.75 \\
& B_{2}^{\prime}=B_{2}=0 \\
& B_{3}^{\prime}=B_{3}=1
\end{aligned}
$$

$[760+5]$
 moleed mvat: its ey to seefs

$$
\begin{equation*}
\left.\left\|A^{\prime}\right\|^{2}=-(\mid 2)^{2}+(-18)\right)^{2}=0=\|A\|^{2} \tag{array}
\end{equation*}
$$

Also,

$$
\left\|B^{\prime}\right\|^{2}=-(0.25)^{2}+(9.75)^{2}+1=4=\|B\|^{2}
$$

as exprested. Full,

$$
\begin{aligned}
A^{\mu} B_{\mu}=A^{0} B_{0}+A^{1} B_{1}+A^{2} B_{2}+A^{3} B_{3} & =(1)(-1)+(-1)(2)+0+0 \\
& =3
\end{aligned}
$$

as

$$
A^{\prime} M B_{\mu}^{\prime}=(2)(0.25)+(-2)(1.75)+0+0=-0.5+3.50=-3
$$

So $A^{\prime} \beta_{\mu}{ }^{\prime}=A^{\mu} B_{\mu}$, as expeeted.
P. 2

Altugh this guestion looks abit out of place, I und sove of this carse to jutroduce the cuepto of groups to the students, botw in a genel way an in the context of this counce (e.g. SO (3, 1), he Lonetz group). Since this is the ory place sae stadats night see grup thery befure getty; thir desrees, I figued, t was wath indudin.
(a) We wet thogh thece with severel exypler, so hyptil) nust studets will reuberwit he far basic pryptrece:

1. CLos HRE: if a ard b ore in G, then $a * b$ is also in G 2. ASSOCIATIVIIY: $t=a y a, b, c \in G,(a * b) * c=a *(b * c)$ [spts]
2. IDENTITY: The ust exist an elent e in G suobthot, fadl $a \in G, a \neq e=e * a=a$.
3. INVERSE: for ewh $a \in G$, therexists $a^{-1} \in G$ suon that $a * a^{-1}=a^{-1}<a=e$ (Sp巾)
(b) Inlecture, we shand tet $\mathbb{R} \backslash\{0\}$ was a sopurder w.itplication of \mathbb{Z} a sap ude additia; this got abstrat's thet abit by putijter tse ie.
4. CLOSED? If x, y al bot prin, tu 501) $x y$. If mad n are bata intser, 50 is $m+n$. Thus, $(x y, m+n) \in Q$, so $(G,+)$ sctisties clorure.
5. ASSOCAATIVE? Mo'rplach seodditi ac bate associte, so

$$
\begin{aligned}
& ((x, k) \not(y, m))(z, n)=\left(x y,{ }^{\prime} x+m\right) \notin(z, n) \\
& =(x y z, h+m+n)=(x, k) *(y z, m+n)=(x, n) \otimes((y, m)+(z ; n))
\end{aligned}
$$

andso is inded assucitie
3. IDENTITY? We rat treent $\left(e_{1}, e_{2}\right)$ ahach rotsis

$$
(x, m)+\left(e_{1}, e_{2}\right)=\left(e_{1}, e_{2}\right) \not(x, m)=(x, m) \text {. Vereet.) }
$$

una, $\left(x e_{1}, m+e_{2}\right)=(x, m)$, so $e_{1}=1$ d $e_{2}=0$. Tus, $(1,0)$ is the idetits elent.
4. (NVERSE? $(x, m)^{-1}$ is sone paid (y, n) sothty j $(x, m) *(x, m)^{-1}=(x, m)^{-1} \forall(x, m)=e=(1,0)$
or $x y=1, m+n=0$. Thue, $y=1 / x, n=-m$ but we alio hine to statetat becie $x>0$, $1 / x$ iexats adi> porite, adrune $m \in \mathbb{Z},-m$ is dso an intser. Reife $(1 / x,-m)$ is hoth on ivere ad is G, so $(x, m)^{-1} \in G$ derexist. [Bpts]
P. 3

In tris proben, we tert circapts of "reet trae", "cate-ctions frue" as wh as invara of $\|P\|^{2}$ ad wasrlers potiches.
(a) If A a B has a hazzer nuss, the ve can 90 into its nest fore. Suppoe w.turt lose at yemils we ass $m B>0$.
Then he tutol 4 -mantun in the reat fof B is

$$
\xrightarrow[E_{A}]{\vec{P}_{A}} \stackrel{B}{0} \quad P_{M}^{M}=\binom{E_{A / c}+m_{B C}}{\vec{P}_{A}}
$$

whe $E_{A}=\sqrt{\left|\vec{p}_{A}\right|^{2} C^{2}+m_{A} C^{4}}$, tun, $\|P\|^{2}=-\left(\frac{E A}{C}+m_{B C}\right)^{2}+\left|\vec{p}_{A}\right|^{2}$

$$
=-\frac{E_{A^{2}}^{2}}{c^{2}}-2 m_{B} E_{A}-m_{B}^{2} c^{2}+\left|\vec{p}_{A}\right|^{2}=-\left(2 m_{B} E_{A}+m_{A}^{2} c^{2}+m_{B}^{2} c^{2}\right)
$$

Bat if X is nasserr, the $\left\|P_{\text {out }}\right\|^{2}=0$. Thes, if this reat ca occu, $2 m_{B} t A+m_{A}^{2} c^{2}+m_{B}^{2} c^{2}=0$. $B_{A}+m_{B}>0$, asine $m_{A} \geq 0 \operatorname{ardd} E_{A} \geq 0$, he see rue s no ongtir can be sleti,fured. Muss, if eiter pitices Mopts) is marrive, this recitin canot occur.
(b) Nom me asse $m_{B}>m_{A}>0$. Sine $m_{A}>0$, A hor a rett fare, ed if ne copsie it 4 -mat in the ret feat A, ulee

$$
\begin{aligned}
& \Rightarrow\left\|P_{i i}\right\|^{2}=-\left(\left|\vec{p}_{x}\right|+m A c\right)^{2}+\left|\vec{p}_{x}\right|^{2}=-2\left|\vec{p}_{x}\right| m_{1} c-m_{A}^{2} c^{2} .
\end{aligned}
$$

Nor, $\left\|P_{\text {ind }}\right\|^{2}=\left\|P_{0}+\right\|^{2}$ codua ase $P_{a t} \therefore a_{y}$ for u li.e: if ne use B^{\prime} 's

 is u.t possible, od co mB>MA ir necessay). Nor, is A's rett f, the tht (3 -maty yis in is $\vec{p} \times s 0 \quad \vec{p} \times 1$ elso tetatal 3-anx goi at, ie. B's matr. Thus, taeny of B is this fer p

$$
\begin{aligned}
E_{B}=\sqrt{\left|\vec{p}_{B}\right|^{2} C^{2}+m_{B}^{2} C^{4}} & =\sqrt{\left(\frac{m_{B}^{2}-m_{A}{ }^{2}}{2 m_{A}}\right)^{2} C^{4}+m_{B}^{2} C^{4}} \\
& =\sqrt{\frac{m_{B}^{4}-2 m_{B}^{2} A^{2} r^{2} m_{A}{ }^{4}+4 M_{A^{2}} n_{B}^{2}}{4 n_{A}^{2}} c^{2}} \\
& \left.\left.=\sqrt{\left(\frac{m_{A}^{2}+m_{B}^{2}}{2 m_{A}}\right)^{2}} c^{2}=\frac{m_{A}^{2}+m_{B} B^{2}}{2 m_{A}} c^{2} \quad \text { [10, }\right\rangle\right]
\end{aligned}
$$

(c) Here, everetold that the tofil CMens, ECM. Fidij thenegis
 wata, $\vec{p} \times d-p_{x} x$. Sinptair eneyis ae bat $\left|\bar{p}_{x}\right| c$, them

$$
P_{\text {out }, C M}^{M}=\left(\begin{array}{c}
2\left|\vec{p}_{x}\right| \\
0 \\
E \subset M
\end{array} B_{2}+\left\|P_{\text {at, }, C M}\right\|^{2}=-E c_{C M}^{2} / c^{2}=-4\left|\vec{p}_{x}\right|^{2},\right.
$$

$$
\text { so }|\bar{p} x|=\frac{E c M}{2 c} \text { or } E_{x}=\frac{1}{2} E_{c M}
$$

[70pts]
$A \& B$ hu eq-i doppeste unta is tor funcrel, sso

$$
\left|\vec{p} A A^{2} c^{2}+u_{A} c^{2} c^{4}=E c_{C M}^{2}-2 E_{C M} \sqrt{\mid \vec{p} A)^{2} c^{2}+n_{h}^{2} c^{4}}+\left|\vec{p}_{A}\right|^{2} c^{2}+u_{D}^{2} c^{4} .\right.
$$

Tuscon

$$
m_{A}^{2} c^{4}=E C_{C M}^{2}-2 E_{C \mu} E E_{B}+m_{B}^{2} C^{2}
$$

$$
E_{B}=\frac{E_{C M}^{2}+m_{B}^{2} C^{4}-m_{A}^{2} C^{4}}{2 E C M}
$$

F.in,

$$
\begin{aligned}
E_{A}=E_{C M}-E_{B} & =\frac{2 E M_{M}^{2}-\left(E A_{M}^{2}+r_{M_{B}^{2}} c^{4}-u_{A}^{2} c^{*}\right)}{2 E C A} \\
& \left.=\frac{E\left(E M_{M}^{2}+m_{A}^{2} c^{4}-m_{B}^{2} c^{4}\right.}{2 E C M}\right)
\end{aligned}
$$

$$
\begin{aligned}
& E_{A}=\sqrt{\left(\left.\vec{p}_{A}\right|^{2} c^{2}+m_{A}^{2} c^{4}\right.} \text { \& } E_{B}=\sqrt{\left|\vec{p}_{A}\right|^{2} c^{2}+n_{D^{2}} c^{4}} \text {. Tues; } \\
& \sqrt{\mid \vec{p} A^{2} c^{2}+h_{A^{2}} c^{4}}+\sqrt{\mid \vec{p} p_{p} P^{2}+m_{B}^{2} c^{4}}=E_{C M} \text {. Ruk, } \\
& \left(\sqrt{|p A|^{2} c^{2}+m_{A^{2}} c^{2}}\right)^{2}=\left(E<M-\sqrt{\left|\vec{p}_{A}\right|^{2} c^{2}+m B^{2} c^{2}}\right)
\end{aligned}
$$

