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1. Consider a spin-1/2 system. The components of the spin are described by
the operators

Ŝx =
~
2

(
0 1
1 0

)
, Ŝy =

~
2

(
0 −i
i 0

)
, Ŝz =

~
2

(
1 0
0 −1

)
.

(a) Consider the state |φ〉 =

(
α

−
√

7α

)
.

The state is normalized. The real and imaginary parts of α are equal.
Find α.

[6 marks]

(b) Calculate the commutator
[
Ŝx, Ŝy

]
and express your answer in terms

of Ŝz.

[6 marks]

(c) Calculate the uncertainty of Sy in the state |W 〉 =

(
1/
√

2
(1− i)/2

)
.

[10 marks]

(d) A measurement of the x-component of the spin (Sx) yields a negative
value. What is the state of the system immediately after the
measurement?

[13 marks]
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2. Consider a particle of mass m on an infinite one-dimensional line. It is
subject to the potential

V (x) =


V0 x < 0 (region 1)

3V0 0 < x < L (region 2)

0 x > L (region 3)

where V0 is a positive constant. For V0 < E3V0, the time-independent
Schroedinger equation has a solution with energy E, of the form

ψ(x) = ψ1(x) = eik1x + Ae−ik1x (region 1)

ψ(x) = ψ2(x) = Beαx + Ce−αx (region 2)

ψ(x) = ψ3(x) = Deik3x (region 3)

where k1, k3 and α are real and positive.

(a) Express the constants k1, k3 and α in terms of E and V0.

[8 marks]

(b) The solution written above can be interpreted as a scattering situation.
Identify the terms representing incident, reflected and tranmitted
waves.

[3 marks]

(c) Define the reflection and transmission probabilities in terms of the
constants appearing in the wavefunction.

[5 marks]

(d) What are the boundary conditions that the solution must satisfy at
x = 0 and at x = L? Use these boundary conditions to write four
equations for the constants A, B, C, D. [8 marks]
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(e) A sketch of the transmission probability T is shown as a function of
incident energy E.

E

0
0
.5

1

T(E)

V
0

3V
0

Sketch a plot of the reflection probability R.

The curve starts at V0 and not at zero. Explain why E < V0 is not
meaningful.

The curve includes the region E > 3V0. How does the form of the
solution change when E > 3V0?

[11 marks]
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3. Consider a particle of mass m in a one-dimensional harmonic oscillator
potential V (x) = 1

2
mω2x2. We denote the orthonormalized energy

eigenstates of the harmonic oscillator by |n〉, on which the lowering and
raising operators act as follows:

â− |n〉 =
√
n |n− 1〉 â+ |n〉 =

√
n+ 1 |n+ 1〉

The ladder operators are defined as

â− =
1√
2

(
1

σ
x̂+

iσ

~
p̂

)
, â+ =

1√
2

(
1

σ
x̂− iσ

~
p̂

)
,

where σ =
√
~/(mω).

(a) Calculate the commutator [â−, â+].

You may need to use the relation [x̂, p̂] = i~.

[7 marks]

(b) Find the uncertainty of position in the state |n〉.

[13 marks]

(c) If the system wavefunction at time t = 0 is

|ψ(0)〉 =
1√
2
|0〉 − i

2
|2〉+

1

2
|3〉

then what is the wavefunction at a later time t = T? Your answer
should contain the oscillator frequency ω.

If the energy is measured at time t = T , what are the possible results of
the measurement? What are the probabilities for the possible results
to occur?

[10 marks]
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——–*——–

SAMPLE ANSWERS

——–*——–

1. Question 1.

Consider a spin-1/2 system. The components of the spin are described by
the operators

Ŝx =
~
2

(
0 1
1 0

)
Ŝy =

~
2

(
0 −i
i 0

)
Ŝz =

~
2

(
1 0
0 −1

)

(a) Question 1(a)

Consider the state |φ〉 =

(
α

−
√

7α

)
.

The state is normalized. The real and imaginary parts of α are equal.
Find α.

[6 marks]

[Sample Answer:]

|α|2 +
∣∣∣√7α

∣∣∣2 = 1 =⇒ |α|2 =
1

8

Since the real and imaginary parts of α are equal, we have

either α =
1

4
+
i

4
or α = −1

4
− i

4

-=-=-=-= * =-=-=-=-

(b) Question 1(b)

Calculate the commutator
[
Ŝx, Ŝy

]
and express your answer in terms

of Ŝz.

[6 marks]
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[Sample Answer:]

[
Ŝx, Ŝy

]
= ŜxŜy − ŜyŜx

=
~2

4

(
0 1
1 0

)(
0 −i
i 0

)
− ~2

4

(
0 −i
i 0

)(
0 1
1 0

)
=

~2

4

(
i 0
0 −i

)
− ~2

4

(
−i 0
0 i

)
= i~

~
2

(
1 0
0 −1

)
= i~Ŝz

-=-=-=-= * =-=-=-=-

(c) Question 1(c)

Calculate the uncertainty of Sy in the state |W 〉 =

(
1/
√

2
(1− i)/2

)
.

[10 marks]

[Sample Answer:]

We need to calculate

∆Sy =
√
〈S2

y〉 − 〈Sy〉2

In the state |W 〉. The operators are

Sy =
~
2

(
0 −i
i 0

)
and S2

y =
~
2

(
0 −i
i 0

)
~
2

(
0 −i
i 0

)
=

~2

4

(
1 0
0 1

)
Therefore the expectation values are

〈Sy〉 = 〈W | Ŝy |W 〉 =
~
2

(
1√
2

1 + i

2

)(
0 −i
i 0

) 1√
2

1− i
2


=

~
2

(
1√
2

1 + i

2

)−1− i
2
i√
2


=

~
2

{
−1− i
2
√

2
+
−1 + i

2
√

2

}
= − ~

2
√

2
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and

〈S2
y〉 = 〈W | Ŝ2

y |W 〉 = 〈W | ~
2

4
I |W 〉 =

~2

4

since the state is normalized.

The uncertainty is therefore

∆Sy =
√
〈S2

y〉 − 〈Sy〉2 =

√
~2
4
−
(
− ~

2
√

2

)2

=
~

2
√

2

-=-=-=-= * =-=-=-=-
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(d) Question 1(d)

A measurement of the x-component of the spin (Sx) yields a negative
value. What is the state of the system immediately after the
measurement?

[13 marks]

[Sample Answer:]

The possible values that can be obtained in a measurement are the
eigenvalues of the operator, and the state after the measurement is
the eigenstate corresponding to the eigenvalue that is found. Thus,
we need to first find the eigenvalues of the operator

Ŝx =
~
2

(
0 1
1 0

)
and then find the eigenstate corresponding to the negative eigenvalue.

Finding the eigenvalue: this can be done in couple of different ways.
If done correctly, the eigenvalues will be ±~/2. These are the possible
values that can be obtained in a measurement of Sx.

Here is a sample eigenvalue calculation:

An eigenvalue λ of

(
0 1
1 0

)
must satisfy

∣∣∣∣(0 1
1 0

)
− λI

∣∣∣∣ = 0

=⇒
∣∣∣∣−λ 1

1 −λ

∣∣∣∣ = 0

=⇒ λ2 − 1 = 0 =⇒ λ = ± 1

=⇒ The eigenvalues of

(
0 1
1 0

)
are ±1

=⇒ The eigenvalues of Ŝx =
~
2

(
0 1
1 0

)
are ±~/2.

The result of the measurement is negative, i.e., equal to −~/2, After
the measurement, the system wavefunction ‘collapses’ to the eigenstate
corresponding to the eigenvalue −~/2. So, we need to calculate the
eigenstate corresponding to the eigenvalue −~/2.
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Calling this eigenstate

(
β
γ

)
, we obtain

Ŝx

(
β
γ

)
= − ~

2

(
β
γ

)
=⇒ ~

2

(
0 1
1 0

)(
β
γ

)
= − ~

2

(
β
γ

)
=⇒

(
γ
β

)
= −

(
β
γ

)
which gives γ = −β, so that the eigenstate is(

β
−β

)
The value of β can be calculated by normalization:

β =
1√
2
eiχ ; χ is an arbitrary real number

Thus the state after the measurement is

1√
2
eiχ

(
1
−1

)
-=-=-=-= * =-=-=-=-
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2. Question 2.

Consider a particle of mass m on an infinite one-dimensional line. It is
subject to the potential

V (x) =


V0 x < 0 (region 1)

3V0 0 < x < L (region 2)

0 x > L (region 3)

where V0 is a positive constant. For V0 < E3V0, the time-independent
Schroedinger equation has a solution with energy E, of the form

ψ(x) = ψ1(x) = eik1x + Ae−ik1x (region 1)

ψ(x) = ψ2(x) = Beαx + Ce−αx (region 2)

ψ(x) = ψ3(x) = Deik3x (region 3)

where k1, k3 and α are real and positive.

(a) Question 2(a)

Express the constants k1, k3 and α in terms of E and V0.

[8 marks]

[Sample Answer:]

k1 =

√
2m(E − V0)

~2
; k3 =

√
2mE

~2
; α =

√
2m(3V0 − E)

~2

-=-=-=-= * =-=-=-=-
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(b) Question 2(b)

The solution written above can be interpreted as a scattering situation.
Identify the terms representing incident, reflected and tranmitted
waves.

[3 marks]

[Sample Answer:]

eik1x −→ incident wave

Ae−ik1x −→ reflected wave

Deik3x −→ transmitted wave

-=-=-=-= * =-=-=-=-

(c) Question 2(c)

Define the reflection and transmission probabilities in terms of the
constants appearing in the wavefunction.

[5 marks]

[Sample Answer:]

The reflection probability is the reflected current divided by the
incident current.

The transmission probability is the transmitted current divided by the
incident current.

incident current = 1× ~k1
m

reflected current = |A|2 × ~k1
m

transmitted current = |D|2 × ~k3
m

Thus

R = |A|2 T = |D|2k3
k1

-=-=-=-= * =-=-=-=-
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(d) Question 2(d)

What are the boundary conditions that the solution must satisfy at
x = 0 and at x = L? Use these boundary conditions to write four
equations for the constants A, B, C, D.

[8 marks]

[Sample Answer:]

Boundary conditions: the wavefunction and its derivative must be
continuous at x = 0 and at x = L. Thus four boundary conditions:

ψ1(0) = ψ2(0) ; ψ′1(0) = ψ′2(0) ; ψ2(L) = ψ3(L) ; ψ′2(L) = ψ′3(L)

Each gives a relation between A, B, C, D. The four equations are

1 + A = B + C

ik1 − ik1A = αB − αC
BeαL + Ce−αL = Deik

3L

αBeαL − αCeαL = ik3De
ik3L

This is a system of linear equations for the four constants. In matrix
form 

1 −1 −1 0
−ik1 −1 1 0

0 eαL e−αL −eik3L
0 αeαL −αe−αL −ik3eik

3L



A
B
C
D

 =


−1
−ik1

0
0


-=-=-=-= * =-=-=-=-
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(e) Question 2(e)

A sketch of the transmission probability T is shown as a function of
incident energy E.

Sketch a plot of the reflection probability R.

The curve starts at V0 and not
at zero. Explain why E < V0
is not meaningful.

The curve includes the region
E > 3V0. How does the form
of the solution change when
E > 3V0? E

0
0
.5

1

T(E)

V
0

3V
0

[11 marks]

[Sample Answer:]

The reflection probability is

R = 1− T

because the sum of reflection
and transmission probabilities
must be one.

E

0
0
.5

1

R(E) =  1 − T(E) 

V
0

3V
0

The curve is only defined for E > V0, because in order to have a
scattering situation, we need plane wave solutions in region 1, i.e., the
kinetic energy needs to be positive.

For E > 3V0, the solutions in region 2 are not exponentials; but also
plane waves. Thus ψ2 has to be corrected:

ψ2(x) = Beik
2x + Ce−ik

2x

Another way of saying this is that α becomes imaginary instead of
real.

-=-=-=-= * =-=-=-=-
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3. Question 3.

Consider a particle of mass m in a one-dimensional harmonic oscillator
potential V (x) = 1

2
mω2x2. We denote the orthonormalized energy

eigenstates of the harmonic oscillator by |n〉, on which the lowering and
raising operators act as follows:

â− |n〉 =
√
n |n− 1〉 â+ |n〉 =

√
n+ 1 |n+ 1〉

The ladder operators are defined as

â− =
1√
2

(
1

σ
x̂+

iσ

~
p̂

)
, â+ =

1√
2

(
1

σ
x̂− iσ

~
p̂

)
,

where σ =
√
~/(mω).

(a) Question 3(a)

Calculate the commutator [â−, â+].

You may need to use the relation [x̂, p̂] = i~.

[7 marks]

[Sample Answer:]

[â−, â+] =
1

2

[(
1

σ
x̂+

iσ

~
p̂

)
,

(
1

σ
x̂− iσ

~
p̂

)]
=

1

2

(
1

σ2
[x̂, x̂] +

−i
~

[x̂, p̂] +
i

~
[p̂, x̂] +

σ2

~2
[p̂, p̂]

)
=

1

2

(
0 +
−i
~

(i~) +
i

~
(−i~) + 0

)
=

1

2

(
~
~

+
~
~

)
= 1

-=-=-=-= * =-=-=-=-

(b) Question 3(b)

(c) Find the uncertainty of position in the state |n〉.

[13 marks]
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[Sample Answer:]

Inverting the given definitions,

x̂ =
σ√
2

(â− + â+) p̂ =
−i~√

2σ
(â− − â+)

Thus

x̂2 =
σ2

2

(
â† + â

) (
â† + â

)
=

σ2

2

(
â†â† + â†â+ ââ† + ââ

)
(1)

NOTE!! Since â and â† do not commute, â†â 6= ââ†. The ordering
of operators matter; thus â†â + ââ† 6= 2â†â This might be a common
mistake.

To evaluate the uncertainty ∆x =
√
〈x̂2〉 − 〈x̂〉2 in the state |n〉,

we need to calculate 〈x̂〉 = 〈n| x̂ |n〉 and 〈x̂2〉 = 〈n| x̂2 |n〉. We
first calculate the expectation values of the required ladder operator
combinations:

〈n| â |n〉 =
√
n〈n
∣∣n− 1〉 = 0 〈n| â† |n〉 =

√
n+ 1〈n

∣∣n+ 1〉 = 0

Note we are using the orthonormality of the eigenstates, 〈m
∣∣n+ 1〉 =

δmn. Extending this calculation, one sees that â†â† and ââ have zero
expectation value, but â†â and ââ† give nonzero contributions.

〈n| ââ |n〉 =
√
n〈n| â |n− 1〉 =

√
n
√
n− 1〈n

∣∣n− 2〉 = 0

Similarly, 〈n| â†â† |n〉 =
√
n+ 1

√
n+ 2〈n

∣∣n+ 2〉 = 0

〈n| â†â |n〉 =
√
n〈n| â† |n− 1〉 =

√
n
√
n〈n
∣∣n〉 = n× 1 = n

〈n| ââ† |n〉 =
√
n+ 1〈n| â |n+ 1〉 =

√
n+ 1

√
n+ 1〈n

∣∣n〉 = n+ 1

Employing these, we obtain

〈x̂〉 =
σ√
2

(
〈â†〉+ 〈â〉

)
= 0

〈x̂2〉 =
σ2

2

(
〈â†â†〉+ 〈â†â〉+ 〈ââ〉† + 〈ââ〉

)
=

σ2

2
[0 + n+ (n+ 1) + 0]

=⇒ 〈x̂2〉 = σ2

(
n+

1

2

)
Thus the unceratinty is

∆x =
√
〈x̂2〉 − 〈x̂〉2 = σ

√
n+

1

2
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-=-=-=-= * =-=-=-=-

(d) Question 3(c)

If the system wavefunction at time t = 0 is

|ψ(0)〉 =
1√
2
|0〉 − i

2
|2〉+

1

2
|3〉

then what is the wavefunction at a later time t = T? Your answer
should contain the oscillator frequency ω.

If the energy is measured at time t = T , what are the possible results of
the measurement? What are the probabilities for the possible results
to occur?

[10 marks]

[Sample Answer:]

The three eigenstates appearing in the wavefunction correspond to
eigenenergies

ε0 =
1

2
~ω ; ε2 =

5

2
~ω ; ε3 =

7

2
~ω .

Hence the wavefunction at time t = T is

|ψ(0)〉 =
1√
2
|0〉e−iε0T/~ − i

2
|2〉e−iε2T/~ +

1

2
|3〉e−iε3T/~

=
1√
2
|0〉e−iωT/2 − i

2
|2〉e−i3ωT/2 +

1

2
|3〉e−i7ωT/2

The possible results of an energy measurement are the eigenenergies
corresponding to the three eigenstates appearing in the wavefunction:

ε0 =
1

2
~ω ; ε2 =

5

2
~ω ; ε3 =

7

2
~ω .

These appear with the probabilities∣∣∣∣ 1√
2
e−iωT/2

∣∣∣∣2 =
1

2
,

∣∣∣∣− i2e−i3ωT/2
∣∣∣∣2 =

1

4
,

∣∣∣∣12e−i7ωT/2
∣∣∣∣2 =

1

4
,

respectively. Note this is independent of T , as the phase factor (con-
taining the time dependence) has modulus one and hence contributes
nothing to the probability. It doesn’t actually matter at which time
the measurement is performed,

-=-=-=-= * =-=-=-=-


