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1. The set {|φ1 〉, |φ2 〉} is an orthonormal basis set for a 2-dimensional Hilbert
space. The states |W 〉, |θ1 〉 and |θ2 〉 are defined as

|W 〉 = α |φ1 〉+ iα |φ2 〉 ,

|θ1 〉 =
i√
3
|φ1 〉 −

√
2√
3
|φ2 〉 , |θ2 〉 =

1√
2
|φ1 〉 +

i√
2
|φ2 〉 .

(a) The state |W 〉 is normalized. The real and imaginary parts of the
constant α are equal. Find α.

[6 marks]

(b) Using the representation

|φ1 〉 =

(
1
0

)
, |φ2 〉 =

(
0
1

)
,

express the operator M̂ = |θ1 〉〈θ2| as a matrix.

[5 marks]

(c) Find out and explain whether or not M̂ = |θ1 〉〈θ2| is hermitian.

Explain whether the operator M̂ can represent a physical observable.

[6 marks]

(d) The observable B is represented by the operator B̂ = |θ2 〉〈θ2|.
Calculate the uncertainty of the observable B in the state |φ1 〉.

[10 marks]
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(e) If B is measured, what are the possible answers that can be obtained?

[8 marks]

(f) If the system Hamiltonian is

Ĥ = F |φ1 〉〈φ1| + G |φ2 〉〈φ2| =

(
F 0
0 G

)
and the system is in the state |θ1 〉 at time t = 0, find the state at any
later time t. Here F and G are real constants.

[15 marks]
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2. Consider a particle of mass m in one dimension, subject to the potential

V (x) = − λδ(x) .

Here λ is a positive constant and δ(x) is the Dirac delta function.

We will consider stationary solutions of the time-independent Schroedinger
equation.

(a) Explain why the derivative of the stationary solution, ψ′(x), need not
be continuous at x = 0.

[3 marks]

(b) Derive the boundary conditions

ψ′R(0)− ψ′L(0) = − 2mλ

~2
ψL(0) = − 2mλ

~2
ψR(0)

where ψL(x) and ψR(x) are the wavefunctions on the left half-line and
right half-line respectively.

Hint: you might consider integrating the Schroedinger equation from
−ε to +ε, and then taking the limit ε→ 0.

[12 marks]

(c) This system has a single bound state at some negative energy, E < 0.
This eigenfunction has the form

ψ(x) =

{
A1e

αx + A2e
−αx for x < 0

A3e
αx + A4e

−αx for x > 0

where α is a positive constant.

Explain which of these terms should be dropped, and why.

Derive the relationship between α and E.

[10 marks]



MP363, 2017–2018, January Exam page 4 of 4

(d) Use the boundary conditions and normalization to determine α and
the normalization constants Ai, in terms of λ. Assume A1 to be real
and positive.

[15 marks]

(e) Calculate the expectation value of momentum in the bound state.

[10 marks]
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——–*——–

SAMPLE ANSWERS

——–*——–

1. Question 1.

The set {|φ1 〉, |φ2 〉} is an orthonormal basis set for a 2-dimensional Hilbert
space. The states |W 〉, |θ1 〉 and |θ2 〉 are defined as

|W 〉 = α |φ1 〉+ iα |φ2 〉 ,

|θ1 〉 =
i√
3
|φ1 〉 −

√
2√
3
|φ2 〉 , |θ2 〉 =

1√
2
|φ1 〉 +

i√
2
|φ2 〉 .

(a) Question 1(a)

The state |W 〉 is normalized. The real and imaginary parts of the
constant α are equal. Find α.

[6 marks]

[Sample Answer:]

|α|2 + |iα|2 = 1 =⇒ |α|2 =
1

2
=⇒ |α| = 1√

2

Since the real and imaginary parts of α are equal, we can write

α = b+ ib

where b is a real number. Then |α|2 = b2 + b2 = 2b2. Hence

2b2 =
1

2
=⇒ b = ±1

2

Therefore we have

either α =
1

2
+
i

2
or α = −1

2
− i

2

-=-=-=-= * =-=-=-=-
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(b) Question 1(b)

Using the representation

|φ1 〉 =

(
1
0

)
, |φ2 〉 =

(
0
1

)
,

express the operator M̂ = |θ1 〉〈θ2| as a matrix.

[5 marks]

[Sample Answer:]

|θ1 〉 =
i√
3
|φ1 〉 −

√
2√
3
|φ2 〉 =

(
i√
3

−
√
2√
3

)

|θ2 〉 =
1√
2
|φ1 〉 +

i√
2
|φ2 〉 =

(
1/
√

2

i/
√

2

)

M̂ = |θ1 〉〈θ2| =

(
i√
3

−
√
2√
3

)(
1/
√

2 −i/
√

2
)

=

(
i√
6

+ 1√
6

− 1√
3

i√
3

)

=
1√
6

(
i +1

−
√

2 i
√

2

)

-=-=-=-= * =-=-=-=-

(c) Question 1(c)

Find out and explain whether or not M̂ = |θ1 〉〈θ2| is hermitian.

Explain whether the operator M̂ can represent a physical observable.

[6 marks]

[Sample Answer:]

M̂ † =

(
− i√

6
− 1√

3

+ 1√
6
− i√

3

)
6= M̂
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Hence not hermitian.

Physical observables are represented by hermitian operators (mea-
sured values need to be real). Hence M̂ cannot represent a physical
observable.

-=-=-=-= * =-=-=-=-

(d) Question 1(d)

The observable B is represented by the operator B̂ = |θ2 〉〈θ2|.
Calculate the uncertainty of the observable B in the state |φ1 〉.

[10 marks]

[Sample Answer:]

|θ2 〉 =
1√
2
|φ1 〉 +

i√
2
|φ2 〉 =

(
1/
√

2

i/
√

2

)

B̂ = |θ2 〉〈θ2| =

(
1/
√

2

i/
√

2

)(
1/
√

2 −i/
√

2
)

=

(
1
2
− i

2
i
2

1
2

)
=

1

2

(
1 −i
i 1

)

B̂2 =
1

4

(
1 −i
i 1

)(
1 −i
i 1

)
=

1

4

(
2 −2i
2i 2

)
=

1

2

(
1 −i
i 1

)
= B̂

In the state |φ1 〉 =

(
1
0

)
,

〈B〉 = 〈θ1| B̂ |θ1 〉 =
(
1 0

)
B̂

(
1
0

)
= B11 =

1

2

and

〈B2〉 = 〈B〉 =
1

2

so that

〈B2〉 − 〈B〉2 =
1

2
− 1

4
=

1

4
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The uncertainty is

∆B =
√
〈B2〉 − 〈B〉2 =

1

2

-=-=-=-= * =-=-=-=-

(e) Question 1(e)

If B is measured, what are the possible answers that can be obtained?

[8 marks]

[Sample Answer:]

The eigenvalues of the B matrix are the possible results of a
measurement. Calculation shows the eigenvalues to be 0 and 1. These
are the possible values.

The eigenvalue calculation might go as follows:∣∣∣∣12 − λ i
2

− i
2

1
2
− λ

∣∣∣∣ = 0 =⇒
(

1

2
− λ
)2

− i

2

(
− i

2

)
= 0

=⇒ 1

4
+ λ2 − λ− 1

4
= 0

=⇒ λ2 − λ = 0 =⇒ λ = 0, 1

-=-=-=-= * =-=-=-=-

(f) Question 1(f)

If the system Hamiltonian is

Ĥ = F |φ1 〉〈φ1| + G |φ2 〉〈φ2| =

(
F 0
0 G

)
and the system is in the state |θ1 〉 at time t = 0, find the state at any
later time t. Here F and G are real constants.
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[15 marks]

[Sample Answer:]

Let’s denote the system wavefunction components as u(t) and v(t),
i.e., the wavefunction is

|ψ(t)〉 =

(
u(t)
v(t)

)
Using the time-dependent Schroedinger equation, Ĥ |ψ(t)〉 = i~ ∂

∂t
|ψ(t)〉,

we obtain(
F 0
0 G

)(
u(t)
v(t)

)
= i~

∂

∂t

(
u(t)
v(t)

)
=⇒

{
u′(t) = − iF

~ u(t)

v′(t) = − iG
~ v(t)

which can be solved to give

u(t) = u(0) exp

[
−iF

~
t

]
; v(t) = v(0) exp

[
−iG

~
t

]
The state at t = 0 is |θ1 〉 = i√

3
|φ1 〉 −

√
2√
3
|φ2 〉, i.e.,(

u(0)
v(0)

)
=

(
i/
√

3

−
√

2/
√

3

)
Therefore

u(t) =
i√
3

exp

[
−iF

~
t

]
; v(t) = −

√
2√
3

exp

[
−iG

~
t

]
so that the wavefunction at time t is

|ψ(t)〉 =

(
i√
3

exp
[
− iF

~ t
]

−
√
2√
3

exp
[
− iG

~ t
]) =

i√
3
e−iF t/~ |φ1 〉 −

√
2√
3
e−iGt/~ |φ2 〉

-=-=-=-= * =-=-=-=-
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2. Question 2.

Consider a particle of mass m in one dimension, subject to the potential

V (x) = − λδ(x) .

Here λ is a positive constant and δ(x) is the Dirac delta function.

We will consider stationary solutions of the time-independent Schroedinger
equation.

(a) Question 2(a)

Explain why the derivative of the stationary solution, ψ′(x), need not
be continuous at x = 0.

[3 marks]

[Sample Answer:]

The derivative needs to be continuous if the potential is everywhere
finite. The potential here is −∞ at x = 0, i.e., not finite everywhere.
Hence the derivative ψ′(x) does not need to be continuous.

-=-=-=-= * =-=-=-=-

(b) Question 2(b)

Derive the boundary conditions

ψ′R(0)− ψ′L(0) = − 2mλ

~2
ψL(0) = − 2mλ

~2
ψR(0)

where ψL(x) and ψR(x) are the wavefunctions on the left half-line and
right half-line respectively.

Hint: you might consider integrating the Schroedinger equation from
−ε to +ε, and then taking the limit ε→ 0.

[12 marks]

[Sample Answer:]

The second equality follows from the continuity of the wavefunction
ψ(x), which is continuous although its derivative is not: ψL(0) =
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ψR(0) = ψ(0). To obtain the eqation for the derivative discontinuity,
we need the Schroedinger equation.

The Schroedinger equation is

− ~2

2m
ψ′′(x) − λδ(x)ψ(x) = Eψ(x)

=⇒ ψ′′(x) = − 2mλ

~2
δ(x)ψ(x)−−2mE

~2
ψ(x)

Integrating both sides from x = −ε to x = +ε, one obtains∫ ε

−ε
ψ′′(x)dx = − 2mλ

~2

∫ ε

−ε
δ(x)ψ(x)dx− 2mE

~2

∫ ε

−ε
ψ(x)dx

The first integral is equal to ψ′(ε)− ψ′(−ε) because d
dx
ψ′(x) = ψ′′(x).

(Fundamental Theorem of Calculus.)

The second integral is ψ(0) due to the definition of the Dirac delta
function.

Since ψ(x) is continuous, the last integral can be approximated for
very small ε as ψ(0)2ε, which is an infinitesimal quantity.

Thus we have

ψ′(ε)− ψ′(−ε) = − 2mλ

~2
ψ(0) − 4mE

~2
ψ(0)ε

In the limit ε→ 0, the last term vanishes, and also

lim
ε→0

ψ′(ε) = ψR(0) , lim
ε→0

ψ′(−ε) = ψL(0) .

Hence we obtain the boundary condition

ψ′R(0)− ψ′L(0) = − 2mλ

~2
ψ(0)

or

ψ′R(0)− ψ′L(0) = − 2mλ

~2
ψL(0) = − 2mλ

~2
ψR(0)

-=-=-=-= * =-=-=-=-
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(c) Question 2(c)

This system has a single bound state at some negative energy, E < 0.
This eigenfunction has the form

ψ(x) =

{
A1e

αx + A2e
−αx for x < 0

A3e
αx + A4e

−αx for x > 0

where α is a positive constant.

Explain which of these terms should be dropped, and why.

Derive the relationship between α and E.

[10 marks]

[Sample Answer:]

For x < 0, the term e−αx blows up at large negative x, so
that the wavefunction becomes impossible to normalize. Hence for
normalizability, the term A2e

−αx should be dropped.

For the corresponding reason, the term e+αx is not allowed in the
x > 0 half-line. Hence the term A3e

αx should be dropped as well. The
eigenfunction has the form

ψ(x) =

{
A1e

αx for x < 0

A4e
−αx for x > 0

To determine the constant α in terms of the energy, we need to consider
the Schroedinger equation either for x < 0 or for x > 0, away from
the problematic point x = 0.

Considering x < 0, the time-independent SE is

− ~2

2m
ψ′′(x) = Eψ(x)

Using ψ(x) = A1e
αx gives

− ~2

2m
A1(α

2)eαx = EA1e
αx =⇒ α =

√
2m(−E)

~2

Since E is negative, α is a real constant.

Can also express E in terms of α:

E = − ~2α2

2m
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-=-=-=-= * =-=-=-=-

(d) Question 2(d)

Use the boundary conditions and normalization to determine α and
the normalization constants Ai, in terms of λ. Assume A1 to be real
and positive.

[15 marks]

[Sample Answer:]

The wavefunction is ψL(x) = A1e
αx on the left and ψR(x) = A4e

−αx

on the right.

Continuity of the wavefunction:

ψL(0) = ψR(0) =⇒ A1 = A4

Normalization:∫ 0

−∞
|ψL(x)|2 dx +

∫ ∞
0

|ψR(x)|2 dx = 1

=⇒ |A1|2
∫ 0

−∞
e2αxdx + |A1|2

∫ ∞
0

e−2αxdx = 1

=⇒ |A1|2
1

2α
+ |A1|2

1

2α
= 1

=⇒ |A1|2 = α =

√
−2mE

~2

Discontinuity of ψ′:

−αA1 − αA1 = − 2mλ

~2
A1

{
using ψ′L(0) = A1(α)e0 = αA1

and ψ′R(0) = A4(−α)e0 = −αA1

=⇒ α =
mλ

~2
=⇒ A1 =

√
α =

√
mλ

~2

(We could also calculate the energy, E = −~2α2

2m
= −mλ2

2~2 , if we were
asked to.)

-=-=-=-= * =-=-=-=-
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(e) Question 2(e)

Calculate the expectation value of momentum in the bound state.

[10 marks]

[Sample Answer:]

The wavefunction of the bound state is ψL(x) = A1e
αx on the left and

ψR(x) = A1e
−αx on the right. We will continue to treat A1 as a real

positive number, so the wavefunction is everywhere real.

The momentum operator is p̂ = −i~ ∂
∂x

; hence the expectation value

of momentum in the state ψ(x) is

〈p〉 =

∫ ∞
−∞

dxψ∗(x)p̂ψ(x) =

∫ ∞
−∞

dxψ∗(x)

(
−i~ ∂

∂x

)
ψ(x)

= − i~
∫ ∞
−∞

dxψ(x)ψ′(x)

We’ve used ψ∗(x) = ψ(x) since the wavefunction is real.

Now we can use the expression for the wavefunction to calculate∫
dxψ(x)ψ′(x). The problem is that there are different expressions

for the negative half-line and positive half-line. Hence we split up the
integral into two parts:∫ ∞

−∞
dxψ(x)ψ′(x) =

∫ 0

−∞
dxψ(x)ψ′(x) +

∫ ∞
0

dxψ(x)ψ′(x)

=

∫ 0

−∞
dxψL(x)ψ′L(x) +

∫ ∞
0

dxψR(x)ψ′R(x)

=

∫ 0

−∞
dx (A1e

αx) (A1αe
αx) +

∫ ∞
0

dx
(
A1e

−αx) (−A1αe
−αx)

= A2
1α

∫ 0

−∞
dxe2αx − A2

1α

∫ ∞
0

dxe−2αx

The two integrals are equal, this can be seen by evaluating both or by
a variable transformation:∫ x=0

x=−∞
dxe2αx =

∫ u=0

u=∞
d(−u)e2α(−u) =

∫ u=0

u=∞
d(−u)e2α(−u)

= −
∫ 0

∞
due−2αu +

∫ ∞
0

due−2αu =

∫ ∞
0

dxe−2αx
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Hence the two integrals cancel, and we have

〈p〉 = − i~
∫ ∞
−∞

dxψ(x)ψ′(x) = − i~A2
1α× 0 = 0

-=-=-=-= * =-=-=-=-


