1. The set $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ is an orthonormal basis set for a 2 -dimensional Hilbert space. The states $|W\rangle,\left|\theta_{1}\right\rangle$ and $\left|\theta_{2}\right\rangle$ are defined as

$$
\begin{gathered}
|W\rangle=\alpha\left|\phi_{1}\right\rangle+i \alpha\left|\phi_{2}\right\rangle, \\
\left|\theta_{1}\right\rangle=\frac{i}{\sqrt{3}}\left|\phi_{1}\right\rangle-\frac{\sqrt{2}}{\sqrt{3}}\left|\phi_{2}\right\rangle, \quad\left|\theta_{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\phi_{1}\right\rangle+\frac{i}{\sqrt{2}}\left|\phi_{2}\right\rangle .
\end{gathered}
$$

(a) The state $|W\rangle$ is normalized. The real and imaginary parts of the constant α are equal. Find α.
[6 marks]
(b) Using the representation

$$
\left|\phi_{1}\right\rangle=\binom{1}{0}, \quad\left|\phi_{2}\right\rangle=\binom{0}{1}
$$

express the operator $\hat{M}=\left|\theta_{1}\right\rangle\left\langle\theta_{2}\right|$ as a matrix.
(c) Find out and explain whether or not $\hat{M}=\left|\theta_{1}\right\rangle\left\langle\theta_{2}\right|$ is hermitian.

Explain whether the operator \hat{M} can represent a physical observable.
(d) The observable B is represented by the operator $\hat{B}=\left|\theta_{2}\right\rangle\left\langle\theta_{2}\right|$. Calculate the uncertainty of the observable B in the state $\left|\phi_{1}\right\rangle$.
[10 marks]
(e) If B is measured, what are the possible answers that can be obtained?

[8 marks]

(f) If the system Hamiltonian is

$$
\hat{H}=F\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+G\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right|=\left(\begin{array}{cc}
F & 0 \\
0 & G
\end{array}\right)
$$

and the system is in the state $\left|\theta_{1}\right\rangle$ at time $t=0$, find the state at any later time t. Here F and G are real constants.
2. Consider a particle of mass m in one dimension, subject to the potential

$$
V(x)=-\lambda \delta(x) .
$$

Here λ is a positive constant and $\delta(x)$ is the Dirac delta function.
We will consider stationary solutions of the time-independent Schroedinger equation.
(a) Explain why the derivative of the stationary solution, $\psi^{\prime}(x)$, need not be continuous at $x=0$.
(b) Derive the boundary conditions

$$
\psi_{R}^{\prime}(0)-\psi_{L}^{\prime}(0)=-\frac{2 m \lambda}{\hbar^{2}} \psi_{L}(0)=-\frac{2 m \lambda}{\hbar^{2}} \psi_{R}(0)
$$

where $\psi_{L}(x)$ and $\psi_{R}(x)$ are the wavefunctions on the left half-line and right half-line respectively.
Hint: you might consider integrating the Schroedinger equation from $-\epsilon$ to $+\epsilon$, and then taking the limit $\epsilon \rightarrow 0$.
(c) This system has a single bound state at some negative energy, $E<0$. This eigenfunction has the form

$$
\psi(x)=\left\{\begin{array}{lll}
A_{1} e^{\alpha x}+A_{2} e^{-\alpha x} & \text { for } & x<0 \\
A_{3} e^{\alpha x}+A_{4} e^{-\alpha x} & \text { for } & x>0
\end{array}\right.
$$

where α is a positive constant.
Explain which of these terms should be dropped, and why.
Derive the relationship between α and E.
(d) Use the boundary conditions and normalization to determine α and the normalization constants A_{i}, in terms of λ. Assume A_{1} to be real and positive.
[15 marks]
(e) Calculate the expectation value of momentum in the bound state.
[10 marks]
\qquad *

SAMPLE ANSWERS

\qquad *

1. Question 1.

The set $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ is an orthonormal basis set for a 2-dimensional Hilbert space. The states $|W\rangle,\left|\theta_{1}\right\rangle$ and $\left|\theta_{2}\right\rangle$ are defined as

$$
\begin{gathered}
|W\rangle=\alpha\left|\phi_{1}\right\rangle+i \alpha\left|\phi_{2}\right\rangle, \\
\left|\theta_{1}\right\rangle=\frac{i}{\sqrt{3}}\left|\phi_{1}\right\rangle-\frac{\sqrt{2}}{\sqrt{3}}\left|\phi_{2}\right\rangle, \quad\left|\theta_{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\phi_{1}\right\rangle+\frac{i}{\sqrt{2}}\left|\phi_{2}\right\rangle .
\end{gathered}
$$

(a) Question 1(a)

The state $|W\rangle$ is normalized. The real and imaginary parts of the constant α are equal. Find α.
[Sample Answer:]

$$
|\alpha|^{2}+|i \alpha|^{2}=1 \quad \Longrightarrow|\alpha|^{2}=\frac{1}{2} \quad \Longrightarrow|\alpha|=\frac{1}{\sqrt{2}}
$$

Since the real and imaginary parts of α are equal, we can write

$$
\alpha=b+i b
$$

where b is a real number. Then $|\alpha|^{2}=b^{2}+b^{2}=2 b^{2}$. Hence

$$
2 b^{2}=\frac{1}{2} \quad \Longrightarrow b= \pm \frac{1}{2}
$$

Therefore we have

$$
\begin{aligned}
\text { either } \quad \alpha & =\frac{1}{2}+\frac{i}{2} \quad \text { or } \quad \alpha=-\frac{1}{2}-\frac{i}{2} \\
- & =-=-=-=*=-=-=-=-
\end{aligned}
$$

(b) Question 1(b)

Using the representation

$$
\left|\phi_{1}\right\rangle=\binom{1}{0}, \quad\left|\phi_{2}\right\rangle=\binom{0}{1}
$$

express the operator $\hat{M}=\left|\theta_{1}\right\rangle\left\langle\theta_{2}\right|$ as a matrix.
[5 marks]
[Sample Answer:]

$$
\begin{aligned}
&\left|\theta_{1}\right\rangle=\frac{i}{\sqrt{3}}\left|\phi_{1}\right\rangle-\frac{\sqrt{2}}{\sqrt{3}}\left|\phi_{2}\right\rangle=\binom{\frac{i}{\sqrt{3}}}{-\frac{\sqrt{2}}{\sqrt{3}}} \\
&\left|\theta_{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\phi_{1}\right\rangle+\frac{i}{\sqrt{2}}\left|\phi_{2}\right\rangle=\binom{1 / \sqrt{2}}{i / \sqrt{2}} \\
& \hat{M}=\left|\theta_{1}\right\rangle\left\langle\theta_{2}\right|=\binom{\frac{i}{\sqrt{3}}}{-\frac{\sqrt{2}}{\sqrt{3}}}(1 / \sqrt{2}-i / \sqrt{2})=\left(\begin{array}{cc}
\frac{i}{\sqrt{6}} & +\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & \frac{i}{\sqrt{3}}
\end{array}\right) \\
&=\frac{1}{\sqrt{6}}\left(\begin{array}{cc}
i & +1 \\
-\sqrt{2} & i \sqrt{2}
\end{array}\right)
\end{aligned}
$$

-=-=-=-= * =-=-=-=-
(c) Question 1(c)

Find out and explain whether or not $\hat{M}=\left|\theta_{1}\right\rangle\left\langle\theta_{2}\right|$ is hermitian.
Explain whether the operator \hat{M} can represent a physical observable.
[Sample Answer:]

$$
\hat{M}^{\dagger}=\left(\begin{array}{ll}
-\frac{i}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\
+\frac{1}{\sqrt{6}} & -\frac{i}{\sqrt{3}}
\end{array}\right) \neq \hat{M}
$$

Hence not hermitian.
Physical observables are represented by hermitian operators (measured values need to be real). Hence \hat{M} cannot represent a physical observable.

```
-=-=-=-= * =-=-=-=-
```

(d) Question 1(d)

The observable B is represented by the operator $\hat{B}=\left|\theta_{2}\right\rangle\left\langle\theta_{2}\right|$. Calculate the uncertainty of the observable B in the state $\left|\phi_{1}\right\rangle$.
[10 marks]

[Sample Answer:]

$$
\begin{gathered}
\left|\theta_{2}\right\rangle=\frac{1}{\sqrt{2}}\left|\phi_{1}\right\rangle+\frac{i}{\sqrt{2}}\left|\phi_{2}\right\rangle=\binom{1 / \sqrt{2}}{i / \sqrt{2}} \\
\hat{B}=\left|\theta_{2}\right\rangle\left\langle\theta_{2}\right|=\binom{1 / \sqrt{2}}{i / \sqrt{2}}(1 / \sqrt{2}-i / \sqrt{2})=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{i}{2} \\
\frac{i}{2} & \frac{1}{2}
\end{array}\right) \\
=\frac{1}{2}\left(\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right) \\
\hat{B}^{2}=\frac{1}{4}\left(\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right)=\frac{1}{4}\left(\begin{array}{cc}
2 & -2 i \\
2 i & 2
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & -i \\
i & 1
\end{array}\right)=\hat{B}
\end{gathered}
$$

In the state $\left|\phi_{1}\right\rangle=\binom{1}{0}$,

$$
\langle B\rangle=\left\langle\theta_{1}\right| \hat{B}\left|\theta_{1}\right\rangle=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \hat{B}\binom{1}{0}=B_{11}=\frac{1}{2}
$$

and

$$
\left\langle B^{2}\right\rangle=\langle B\rangle=\frac{1}{2}
$$

so that

$$
\left\langle B^{2}\right\rangle-\langle B\rangle^{2}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}
$$

The uncertainty is

$$
\begin{gathered}
\Delta B=\sqrt{\left\langle B^{2}\right\rangle-\langle B\rangle^{2}}=\frac{1}{2} \\
-=-=-=-=*=-=-=-=-
\end{gathered}
$$

(e) Question 1(e)

If B is measured, what are the possible answers that can be obtained?
[8 marks]

[Sample Answer:]

The eigenvalues of the B matrix are the possible results of a measurement. Calculation shows the eigenvalues to be 0 and 1 . These are the possible values.
The eigenvalue calculation might go as follows:

$$
\begin{aligned}
&\left|\begin{array}{cc}
\frac{1}{2}-\lambda & \frac{i}{2} \\
-\frac{i}{2} & \frac{1}{2}-\lambda
\end{array}\right|=0 \Longrightarrow \quad\left(\frac{1}{2}-\lambda\right)^{2}-\frac{i}{2}\left(-\frac{i}{2}\right)=0 \\
& \Longrightarrow \frac{1}{4}+\lambda^{2}-\lambda-\frac{1}{4}=0 \\
& \Longrightarrow \quad \lambda^{2}-\lambda=0 \quad \Longrightarrow \quad \lambda=0,1 \\
&-=-=-=-=*=-=-=-=-
\end{aligned}
$$

(f) Question 1(f)

If the system Hamiltonian is

$$
\hat{H}=F\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|+G\left|\phi_{2}\right\rangle\left\langle\phi_{2}\right|=\left(\begin{array}{cc}
F & 0 \\
0 & G
\end{array}\right)
$$

and the system is in the state $\left|\theta_{1}\right\rangle$ at time $t=0$, find the state at any later time t. Here F and G are real constants.

[Sample Answer:]

Let's denote the system wavefunction components as $u(t)$ and $v(t)$, i.e., the wavefunction is

$$
|\psi(t)\rangle=\binom{u(t)}{v(t)}
$$

Using the time-dependent Schroedinger equation, $\hat{H}|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle$, we obtain

$$
\left(\begin{array}{ll}
F & 0 \\
0 & G
\end{array}\right)\binom{u(t)}{v(t)}=i \hbar \frac{\partial}{\partial t}\binom{u(t)}{v(t)} \Longrightarrow\left\{\begin{array}{l}
u^{\prime}(t)=-\frac{i F}{\hbar} u(t) \\
v^{\prime}(t)=-\frac{i G}{\hbar} v(t)
\end{array}\right.
$$

which can be solved to give

$$
u(t)=u(0) \exp \left[-\frac{i F}{\hbar} t\right] ; \quad v(t)=v(0) \exp \left[-\frac{i G}{\hbar} t\right]
$$

The state at $t=0$ is $\left|\theta_{1}\right\rangle=\frac{i}{\sqrt{3}}\left|\phi_{1}\right\rangle-\frac{\sqrt{2}}{\sqrt{3}}\left|\phi_{2}\right\rangle$, i.e.,

$$
\binom{u(0)}{v(0)}=\binom{i / \sqrt{3}}{-\sqrt{2} / \sqrt{3}}
$$

Therefore

$$
u(t)=\frac{i}{\sqrt{3}} \exp \left[-\frac{i F}{\hbar} t\right] ; \quad v(t)=-\frac{\sqrt{2}}{\sqrt{3}} \exp \left[-\frac{i G}{\hbar} t\right]
$$

so that the wavefunction at time t is

$$
|\psi(t)\rangle=\binom{\frac{i}{\sqrt{3}} \exp \left[-\frac{i F}{\hbar} t\right]}{-\frac{\sqrt{2}}{\sqrt{3}} \exp \left[-\frac{i G}{\hbar} t\right]}=\frac{i}{\sqrt{3}} e^{-i F t / \hbar}\left|\phi_{1}\right\rangle-\frac{\sqrt{2}}{\sqrt{3}} e^{-i G t / \hbar}\left|\phi_{2}\right\rangle
$$

2. Question 2.

Consider a particle of mass m in one dimension, subject to the potential

$$
V(x)=-\lambda \delta(x) .
$$

Here λ is a positive constant and $\delta(x)$ is the Dirac delta function.
We will consider stationary solutions of the time-independent Schroedinger equation.
(a) Question 2(a)

Explain why the derivative of the stationary solution, $\psi^{\prime}(x)$, need not be continuous at $x=0$.

```
[3 marks]
```


[Sample Answer:]

The derivative needs to be continuous if the potential is everywhere finite. The potential here is $-\infty$ at $x=0$, i.e., not finite everywhere. Hence the derivative $\psi^{\prime}(x)$ does not need to be continuous.

(b) Question 2(b)

Derive the boundary conditions

$$
\psi_{R}^{\prime}(0)-\psi_{L}^{\prime}(0)=-\frac{2 m \lambda}{\hbar^{2}} \psi_{L}(0)=-\frac{2 m \lambda}{\hbar^{2}} \psi_{R}(0)
$$

where $\psi_{L}(x)$ and $\psi_{R}(x)$ are the wavefunctions on the left half-line and right half-line respectively.
Hint: you might consider integrating the Schroedinger equation from $-\epsilon$ to $+\epsilon$, and then taking the limit $\epsilon \rightarrow 0$.

[Sample Answer:]

The second equality follows from the continuity of the wavefunction $\psi(x)$, which is continuous although its derivative is not: $\psi_{L}(0)=$
$\psi_{R}(0)=\psi(0)$. To obtain the eqation for the derivative discontinuity, we need the Schroedinger equation.
The Schroedinger equation is

$$
\begin{aligned}
&-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)- \lambda \delta(x) \psi(x)=E \psi(x) \\
& \Longrightarrow \quad \psi^{\prime \prime}(x)=-\frac{2 m \lambda}{\hbar^{2}} \delta(x) \psi(x)--\frac{2 m E}{\hbar^{2}} \psi(x)
\end{aligned}
$$

Integrating both sides from $x=-\epsilon$ to $x=+\epsilon$, one obtains

$$
\int_{-\epsilon}^{\epsilon} \psi^{\prime \prime}(x) d x=-\frac{2 m \lambda}{\hbar^{2}} \int_{-\epsilon}^{\epsilon} \delta(x) \psi(x) d x-\frac{2 m E}{\hbar^{2}} \int_{-\epsilon}^{\epsilon} \psi(x) d x
$$

The first integral is equal to $\psi^{\prime}(\epsilon)-\psi^{\prime}(-\epsilon)$ because $\frac{d}{d x} \psi^{\prime}(x)=\psi^{\prime \prime}(x)$. (Fundamental Theorem of Calculus.)
The second integral is $\psi(0)$ due to the definition of the Dirac delta function.
Since $\psi(x)$ is continuous, the last integral can be approximated for very small ϵ as $\psi(0) 2 \epsilon$, which is an infinitesimal quantity.
Thus we have

$$
\psi^{\prime}(\epsilon)-\psi^{\prime}(-\epsilon)=-\frac{2 m \lambda}{\hbar^{2}} \psi(0)-\frac{4 m E}{\hbar^{2}} \psi(0) \epsilon
$$

In the limit $\epsilon \rightarrow 0$, the last term vanishes, and also

$$
\lim _{\epsilon \rightarrow 0} \psi^{\prime}(\epsilon)=\psi_{R}(0), \quad \lim _{\epsilon \rightarrow 0} \psi^{\prime}(-\epsilon)=\psi_{L}(0) .
$$

Hence we obtain the boundary condition

$$
\psi_{R}^{\prime}(0)-\psi_{L}^{\prime}(0)=-\frac{2 m \lambda}{\hbar^{2}} \psi(0)
$$

or

$$
\begin{aligned}
\psi_{R}^{\prime}(0)-\psi_{L}^{\prime}(0) & =-\frac{2 m \lambda}{\hbar^{2}} \psi_{L}(0)=-\frac{2 m \lambda}{\hbar^{2}} \psi_{R}(0) \\
- & =-=-=-=*=-=-=-=-
\end{aligned}
$$

(c) Question 2(c)

This system has a single bound state at some negative energy, $E<0$. This eigenfunction has the form

$$
\psi(x)=\left\{\begin{array}{lll}
A_{1} e^{\alpha x}+A_{2} e^{-\alpha x} & \text { for } & x<0 \\
A_{3} e^{\alpha x}+A_{4} e^{-\alpha x} & \text { for } & x>0
\end{array}\right.
$$

where α is a positive constant.
Explain which of these terms should be dropped, and why.
Derive the relationship between α and E.
[10 marks]

[Sample Answer:]

For $x<0$, the term $e^{-\alpha x}$ blows up at large negative x, so that the wavefunction becomes impossible to normalize. Hence for normalizability, the term $A_{2} e^{-\alpha x}$ should be dropped.
For the corresponding reason, the term $e^{+\alpha x}$ is not allowed in the $x>0$ half-line. Hence the term $A_{3} e^{\alpha x}$ should be dropped as well. The eigenfunction has the form

$$
\psi(x)=\left\{\begin{array}{lll}
A_{1} e^{\alpha x} & \text { for } \quad x<0 \\
A_{4} e^{-\alpha x} & \text { for } \quad x>0
\end{array}\right.
$$

To determine the constant α in terms of the energy, we need to consider the Schroedinger equation either for $x<0$ or for $x>0$, away from the problematic point $x=0$.
Considering $x<0$, the time-independent SE is

$$
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)=E \psi(x)
$$

Using $\psi(x)=A_{1} e^{\alpha x}$ gives

$$
-\frac{\hbar^{2}}{2 m} A_{1}\left(\alpha^{2}\right) e^{\alpha x}=E A_{1} e^{\alpha x} \quad \Longrightarrow \quad \alpha=\sqrt{\frac{2 m(-E)}{\hbar^{2}}}
$$

Since E is negative, α is a real constant.
Can also express E in terms of α :

$$
E=-\frac{\hbar^{2} \alpha^{2}}{2 m}
$$

(d) Question 2(d)

Use the boundary conditions and normalization to determine α and the normalization constants A_{i}, in terms of λ. Assume A_{1} to be real and positive.
[15 marks]

[Sample Answer:]

The wavefunction is $\psi_{L}(x)=A_{1} e^{\alpha x}$ on the left and $\psi_{R}(x)=A_{4} e^{-\alpha x}$ on the right.
Continuity of the wavefunction:

$$
\psi_{L}(0)=\psi_{R}(0) \quad \Longrightarrow \quad A_{1}=A_{4}
$$

Normalization:

$$
\begin{gathered}
\int_{-\infty}^{0}\left|\psi_{L}(x)\right|^{2} d x+\int_{0}^{\infty}\left|\psi_{R}(x)\right|^{2} d x=1 \\
\Longrightarrow \quad\left|A_{1}\right|^{2} \int_{-\infty}^{0} e^{2 \alpha x} d x+\left|A_{1}\right|^{2} \int_{0}^{\infty} e^{-2 \alpha x} d x=1 \\
\Longrightarrow \quad\left|A_{1}\right|^{2} \frac{1}{2 \alpha}+\left|A_{1}\right|^{2} \frac{1}{2 \alpha}=1 \\
\Longrightarrow \quad\left|A_{1}\right|^{2}=\alpha=\sqrt{-\frac{2 m E}{\hbar^{2}}}
\end{gathered}
$$

Discontinuity of ψ^{\prime} :

$$
\begin{gathered}
-\alpha A_{1}-\alpha A_{1}=-\frac{2 m \lambda}{\hbar^{2}} A_{1} \quad\left\{\begin{array}{l}
\operatorname{using} \psi_{L}^{\prime}(0)=A_{1}(\alpha) e^{0}=\alpha A_{1} \\
\text { and } \psi_{R}^{\prime}(0)=A_{4}(-\alpha) e^{0}=-\alpha A_{1}
\end{array}\right. \\
\Longrightarrow \quad \alpha=\frac{m \lambda}{\hbar^{2}} \quad \Longrightarrow \quad A_{1}=\sqrt{\alpha}=\sqrt{\frac{m \lambda}{\hbar^{2}}}
\end{gathered}
$$

(We could also calculate the energy, $E=-\frac{\hbar^{2} \alpha^{2}}{2 m}=-\frac{m \lambda^{2}}{2 \hbar^{2}}$, if we were asked to.)
(e) Question 2(e)

Calculate the expectation value of momentum in the bound state.
[10 marks]

[Sample Answer:]

The wavefunction of the bound state is $\psi_{L}(x)=A_{1} e^{\alpha x}$ on the left and $\psi_{R}(x)=A_{1} e^{-\alpha x}$ on the right. We will continue to treat A_{1} as a real positive number, so the wavefunction is everywhere real.
The momentum operator is $\hat{p}=-i \hbar \frac{\partial}{\partial x}$; hence the expectation value of momentum in the state $\psi(x)$ is

$$
\begin{aligned}
\langle p\rangle=\int_{-\infty}^{\infty} d x \psi^{*}(x) \hat{p} \psi(x)=\int_{-\infty}^{\infty} d x \psi^{*}(x) & \left(-i \hbar \frac{\partial}{\partial x}\right) \psi(x) \\
& =-i \hbar \int_{-\infty}^{\infty} d x \psi(x) \psi^{\prime}(x)
\end{aligned}
$$

We've used $\psi^{*}(x)=\psi(x)$ since the wavefunction is real.
Now we can use the expression for the wavefunction to calculate $\int d x \psi(x) \psi^{\prime}(x)$. The problem is that there are different expressions for the negative half-line and positive half-line. Hence we split up the integral into two parts:

$$
\begin{array}{r}
\int_{-\infty}^{\infty} d x \psi(x) \psi^{\prime}(x)=\int_{-\infty}^{0} d x \psi(x) \psi^{\prime}(x)+\int_{0}^{\infty} d x \psi(x) \psi^{\prime}(x) \\
=\int_{-\infty}^{0} d x \psi_{L}(x) \psi_{L}^{\prime}(x)+\int_{0}^{\infty} d x \psi_{R}(x) \psi_{R}^{\prime}(x) \\
=\int_{-\infty}^{0} d x\left(A_{1} e^{\alpha x}\right)\left(A_{1} \alpha e^{\alpha x}\right)+\int_{0}^{\infty} d x\left(A_{1} e^{-\alpha x}\right)\left(-A_{1} \alpha e^{-\alpha x}\right) \\
=A_{1}^{2} \alpha \int_{-\infty}^{0} d x e^{2 \alpha x}-A_{1}^{2} \alpha \int_{0}^{\infty} d x e^{-2 \alpha x}
\end{array}
$$

The two integrals are equal, this can be seen by evaluating both or by a variable transformation:

$$
\begin{aligned}
\int_{x=-\infty}^{x=0} d x e^{2 \alpha x} & =\int_{u=\infty}^{u=0} d(-u) e^{2 \alpha(-u)}=\int_{u=\infty}^{u=0} d(-u) e^{2 \alpha(-u)} \\
& =-\int_{\infty}^{0} d u e^{-2 \alpha u}+\int_{0}^{\infty} d u e^{-2 \alpha u}=\int_{0}^{\infty} d x e^{-2 \alpha x}
\end{aligned}
$$

Hence the two integrals cancel, and we have

$$
\langle p\rangle=-i \hbar \int_{-\infty}^{\infty} d x \psi(x) \psi^{\prime}(x)=-i \hbar A_{1}^{2} \alpha \times 0=0
$$

$$
-=-=-=-=*=-=-=-=-
$$

