Due on Friday, October 2nd, 8PM.

To be scanned and uploaded as a SINGLE PDF FILE.

The questions indicated as **[SELF]** are for self-study and additional exercise. They will not be marked. (No need to include them in the work that you scan in.) You are however strongly advised to work through them.

- (a) [2+2 pts.] Look up and report the definitions of

 the hermitian conjugate of a matrix;
 a hermitian or self-adjoint matrix.
 (Try any textbook on quantum mechanics or linear algebra, wikipedia,....)
 - (b) $[4 \times 2 \text{ pts.}]$ Find out whether the following matrices are hermitian or not. This will involve calculating the hermitian conjugate of each matrix and comparing with the matrix itself.

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \quad C = \begin{pmatrix} 0 & 1 & i \\ 1 & 1 & 0 \\ -i & 0 & 5 \end{pmatrix}$$

- (c) **[SELF]** Look up Pauli matrices. One of the above matrices is a Pauli matrix. Which one, and which Pauli matrix? What do Pauli matrices represent?
- 2. The equation

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) + V(x)\psi(x) = E\psi(x)$$

is the (time-independent) Schroedinger equation for a single particle in a potential V(x). Solutions of this equation are stationary states of a particle in the potential V(x). Note that E is a constant (independent of x) giving the energy of the stationary state.

- (a) [2 pts.] Write down the time-independent Schroedinger equation for the case of no potential, V(x) = 0.
- (b) [6 pts.] Show that the function $e^{-x^2/2\sigma^2}$ is not a solution of this equation for V = 0. You can do this by substituting $\psi(x) = e^{-x^2/2\sigma^2}$ on both sides of the equation, and then showing that the two sides cannot be equal at all x.

- (c) [5 pts.] Show that the function $\sin(kx)$ is a solution of this equation with V = 0, for a specific value of the energy E. Express this value of E in terms of k, \hbar and m.
- (d) **[SELF]** Is $\cos(kx)$ also a solution? Corresponding to the same *E* or different *E*?
- (e) [5 pts.] Is the function e^{ikx} also a solution? Corresponding to the same E or different E?
- (f) **[SELF]** If $f_1(x)$ and $f_2(x)$ are both solutions, corresponding to the same value of E, then show that any linear combination $c_1f_1(x) + c_2f_2(x)$ is also a solution. Does this work if $f_1(x)$ and $f_2(x)$ are both solutions, but correspond to different values E_1 and E_2 ?
- (g) **[SELF]** Can e^{ikx} be expressed as a linear combination of sin(kx) and cos(kx)?
- 3. (a) [2 pts.] Now write down the time-independent Schroedinger equation for the case of a harmonic potential $V(x) = \frac{1}{2}m\omega^2 x^2$.
 - (b) [7 pts.] Show that the gaussian function $e^{-x^2/2\sigma^2}$ is a solution of this equation, for specific values of σ and E. Indicate clearly the constant values of σ and E for which the gaussian function is a solution. (i.e., express σ and E as functions of \hbar , m and ω , such that $e^{-x^2/2\sigma^2}$ is a solution)
 - (c) [3 pts.] Sketch plots of $e^{-x^2/2\sigma^2}$ as a function of x, for $\sigma = 1$ and $\sigma = 2$. Both curves should be on the same graph. Which property of the gaussian curve does σ represent?
 - (d) [3 pts.] Does σ increase or decrease with increasing strength of the trapping potential (increasing ω)? Explain why your answer makes sense physically.
 - (e) [3 pts.] Look up the expression for the energy eigenvalues (energy levels) for the quantum harmonic oscillator. (E.g., on the wikipedia page on "quantum harmonic oscillator".) Explain how your answer for E matches one of the energy eigenvalues.
 - (f) [2 pts.] Now imagine that the harmonic potential is not centered at zero, but at a, i.e., $V(x) = \frac{1}{2}m\omega^2(x-a)^2$. Using physical arguments, write down the corresponding gaussian solution to the time-independent Schroedinger equation.