Due on Friday, October 9th.
The questions indicated as [SELF] are for self-study and additional exercise: no need to submit your work on these questions.

1. Consider a two-state system, so that the Hilbert space is two-dimensional, i.e., the Hamiltonian is a 2×2 matrix and the wavefunction is a vector with two complex components. Let's denote the wavefunction as

$$
\psi(t)=\binom{u(t)}{v(t)}
$$

We will consider a relatively simple (diagonal) Hamiltonian:

$$
H=\left(\begin{array}{cc}
\epsilon_{1} & 0 \\
0 & \epsilon_{2}
\end{array}\right)
$$

(a) [6 pts.] Using the time-dependent Schroedinger equation, write down differential equations for the functions $u(t)$ and $v(t)$.
(b) [$\mathbf{7}$ pts.] Solve the differential equations, so that $u(t)$ and $v(t)$ are expressed in terms of the initial values $u(0)$ and $v(0)$.
(c) [5 pts.] Show that the norm of the wavefunction, $|u(t)|^{2}+|v(t)|^{2}$, is independent of time.
(d) [$\mathbf{3}$ pts.] Provide an expression for $\psi(t)$, in the case that the initial state is

$$
\psi(0)=\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}
$$

2. Electromagnetic waves as particles:
(a) Visible light has a wavelength in the range of 400-700 nm.
i. [SELF] What is the frequency range of visible light?
ii. [4 pts.] What is the energy range of a photon of visible light?
(b) [4 pts.] A kitchen microwave operates at frequency 2.5 GHz and at power 750 Watts. How many photons does the microwave emit per second?
(c) [SELF] How many microwave photons [from the previous question] are required to heat up a 0.2 -liter glass of water by $10^{\circ} \mathrm{C}$? The heat capacity of water is roughly $4185 \mathrm{~J} /(\mathrm{kg} \cdot \mathrm{K})$, and a liter of water weighs roughly 1 kg .
(d) [SELF] A low-power laser (10^{-3} Watts) gives out light of wavelength 633 nm . How many photons does it emit per second?
3. Consider the wavefunction of a single particle confined to the positive half of a one dimensional line, i.e., the wavefunction vanishes in the region $x<0$. The wavefunction is known to be

$$
\psi(x)= \begin{cases}N e^{-x / \lambda} & \text { for } x>0 \\ 0 & \text { for } x<0\end{cases}
$$

(a) [8 pts.] Calculate the constant N so that the wavefunction is normalized. Keep your answer general: do not assume N to be real. (In case normalization has not yet been covered in class: please look it up. E.g., you could try googling "wavefunction normalization".)
(b) [10 pts.] Calculate the probablity of finding the particle inside the region $x \in[\lambda, 2 \lambda]$. Reminder: $|\psi(x)|^{2}$ is the 'probability density'.
(c) $[2+1 \mathbf{p t s}$.$] Sketch a plot of the probability density, |\psi(x)|^{2}$, as a function of position x. Show the region on this plot whose area represents the probability you have calculated above.
(Hand-drawn sketch, please, no computer printouts.)
(d) [SELF] The given wavefunction is not acceptable as a stationary solution of the time-indepenedent SE. Why?
4. [SELF] We need to learn "bra-ket" notation. Please read through Nash's notes, sections 1 to 4 . It will be assumed that you have learned linear algebra previously; it won't be repeated in class.

