Due on Friday, October 16th
The questions indicated as [SELF] are for self-study and additional exercise.

1. (a) [SELF] Derive, using 'integration by parts', the result

$$
\int_{0}^{\infty} d u u e^{-b u}=\frac{1}{b^{2}} .
$$

You might need this integral later on in this assignment.
(b) [SELF] Teach yourself how to calculate definite and indefinite integrals using a computer algebra program (e.g., Mathematica, Maple or Maxima). Or: how to use an online integrator (search on google for 'online integrator'). Check the result above.
2. Normalization. Assume the constants α_{i} to be real and positive.
(a) [8 pts.] Consider a single particle confined to the half-line $x \geq 0$. The inner product is given by $\langle\phi \mid \xi\rangle=\int_{0}^{\infty} \phi^{*}(x) \xi(x) d x$. Find the constant α_{1} so that the wavefunction

$$
\psi(x)=\alpha_{1} \sqrt{x} e^{-x}
$$

is normalized.
(b) [$\mathbf{3}$ pts.] Consider a spin- $1 / 2$ (two-state) system. Find the constant α_{2} so that the following state is normalized:

$$
|\psi\rangle=\alpha_{2}\binom{2 i}{-1+i}
$$

(c) [7 pts.] Consider a system with an infinite-dimensional Hilbert space, for which any state can be expressed as a linear combination of the set of states $\left\{\left|\phi_{n}\right\rangle\right\}$, with $n=0,1,2, \ldots$. This set of 'basis states' satisfy $\left\langle\phi_{m} \mid \phi_{n}\right\rangle=\delta_{m n}$. Find the constant α_{3} so that the following state is normalized:

$$
|\psi\rangle=\alpha_{3} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n}}\left|\phi_{n}\right\rangle .
$$

(d) [4 pts.] For a system with a 4-dimensional Hilbert space, find the constant α_{4} so that the following wavefunction is normalized:

$$
|\psi\rangle=\alpha_{4}\left(\begin{array}{c}
-2 \\
-1+3 i \\
i \\
-i
\end{array}\right) .
$$

(e) [8 pts.] For a single particle confined in the $x-y$ plane, find the constant α_{5} so that the following wavefunction is normalized:

$$
\psi(x, y)=\alpha_{5} e^{-\left(x^{2}+y^{2}\right) / 2}
$$

Note: for this system the inner product is given by

$$
\langle\phi \mid \xi\rangle=\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \quad \phi^{*}(x, y) \xi(x, y)
$$

3. Discrete energy values and blackbody radiation:
(a) [10 pts.] In thermal equilibrium, the probability of a mode having energy E is proportional to $e^{-E / k_{B} T}=e^{-\beta E}$. Here we have defined $\beta=k_{B} T$.
Show that the average energy of the mode is $k_{B} T$ or $1 / \beta$ if the energy E is a continuous variable, and is $h f /\left(e^{\beta h f}-1\right)$ if the energy is discrete and quantized in units of $h f$.
You might have to use the summation formulae

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad \text { and } \quad \sum_{n=0}^{\infty} n x^{n}=\frac{x}{(1-x)^{2}} \quad \text { for }|x|<1
$$

(b) [5+5 pts.] Planck obtained the correct blackbody radiation spectrum by replacing the classical expression by the quantum expression:

$$
\frac{1}{\beta} \longrightarrow \frac{h f}{e^{\beta h f}-1}
$$

Show that the quantum expression reduces to the classical expression at small frequencies. Show this in two ways:

- by taking the limit $f \rightarrow 0$ of the quantum expression.
(You might have to use L'Hopital's rule.)
- by expanding the exponential in the denominator to lowest order.
(c) [SELF] Express the quantum expression above as a power series in f. The first term should be the classical expression. You could try working out the Taylor series by taking successive derivatives of the full expresison (quite tedious: L'Hopital's rule needed multiple times), or you could try expanding only $e^{\beta h f}$ and then using $(1+x)^{-1} \approx$ $1-x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}+\ldots$.

