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Some hints/solutions to problem set 04.

Please use responsibly — there might be misprints and typos.

−−−−−−−−−−−−− ?−−−−−−−−−−−−

1. Matrices (or operators) might not commute with each other. This means,
it Â and B̂ are matrices (or operators), ÂB̂ might be unequal to B̂Â. We
define the commutator of two matrices (or oberators) Â and B̂ as

[Â, B̂] = ÂB̂ − B̂Â

Sometimes operators acting on functions are written with a hat, as I’ve
done here. Operators acting on finite vectors, i.e., matrices, are usually
written without a hat. Let’s use the hat notation for this problem.

(a) Show that [B̂, Â] = −[Â, B̂].

Hints / Solution / Discussion →
trivial

(b) Show that [Â, B̂ + Ĉ] = [Â, B̂] + [Â, Ĉ].

Typing hats is painful, so I write the answers without hats.

[A,B + C] = A(B + C)− (B + C)A = AB + AC −BA− CA
= (AB −BA) + (AC − CA) = [A,B] + [A,C]

Hints / Solution / Discussion →

(c) Show that [Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ].

Hints / Solution / Discussion →

Left side = [A,BC] = ABC −BCA

Right side = [A,B]C +B[A,C] = (AB−BA)C + B(AC−CA)

= ABC −BAC +BAC −BCA = ABC −BCA

Hence the two sides are equal.
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2. (a) Look up the three Pauli matrices, denoted as σx, σy, σz, and write
them down, (Each one is a 2× 2 matrix.)

Hints / Solution / Discussion →

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σx =

(
1 0
0 −1

)
(b) Calculate [σx, σy] and express it in terms of σz.

Hints / Solution / Discussion →

[σx, σy] = σxσy − σyσx

=

(
0 1
1 0

)(
0 −i
i 0

)
−
(

0 −i
i 0

)(
0 1
1 0

)
=

(
i 0
0 −i

)
−
(
−i 0
0 i

)
=

(
2i 0
0 −2i

)
= 2i

(
1 0
0 −1

)
= 2iσz

(c) Look up (or calculate or guess correctly) [σy, σz] in terms of σx, and
[σz, σx] in terms of σy. No need to show calculations; just report the
results.

Hints / Solution / Discussion →

[σy, σz] = 2iσx [σz, σx] = 2iσy

(d) Find the eigenvalues and eigenvectors of σx.

Hints / Solution / Discussion →
To calculate eigenvalues, could write the equation(

0 1
1 0

)(
α
β

)
= λ

(
α
β

)
and try looking for solutions for λ, α, β. Probably easier to use the
determinant condition for eigenvalues:∣∣∣∣0− λ 1

1 0− λ

∣∣∣∣ = 0
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The solutions are λ = ±1.

Eigenvector corresponding to λ = 1: substituting this value in the
eigenvalue equation,(

0 1
1 0

)(
α
β

)
=

(
α
β

)
=⇒ α = β

so the corresponding eigenvector is

(
α
α

)
, or, normalizing,

(
1/
√

2

1/
√

2

)
times an arbitrary phase factor.

The unknown phase factor is an important qualifier. This means that

−
(

1/
√

2

1/
√

2

)
= eiπ

(
1/
√

2

1/
√

2

)
and

eiπ/2
(

1/
√

2

1/
√

2

)
=

(
i/
√

2

i/
√

2

)
and

eiπ/4
(

1/
√

2

1/
√

2

)
=

(
1
2

+ i
2

1
2

+ i
2

)
are all equally valid normalized eigenvectors corresponding to the
eigenvalue λ = 1.

Similarly, eigenvector corresponding to λ = −1 can be found to be(
α
−α

)
, or, normalizing,

(
1/
√

2

−1/
√

2

)
times an arbitrary phase factor.

(e) Find the eigenvalues and eigenvectors of σz.

Hints / Solution / Discussion →
The eigenvalues are ±1. Corresponding normalized eigenvectors are(

1
0

)
corresponding to eigenvalue +1 (1)(

0
1

)
corresponding to eigenvalue −1 (2)

.... times arbitrary phase factors, of course.

(f) Is it easier to find eigenvalues & eigenvectors if the matrix is diagonal?
Why?
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Hints / Solution / Discussion →
Because, if diagonal, the diagonal matrix elements are themselves the
eigenvalues. No additional calculation required for eigenvalues, if the
matrix is ‘already’ diagonal.

3. (a) In Charles Nash’s notes (linked on module webpage): Read Section 5
of Chapter III, on ‘Expectation Values’. Begins on page 42.

(b) Define the expectation value of an observable represented by operator
Â, when the system state is |ψ 〉.

Hints / Solution / Discussion →

〈ψ| Â |ψ 〉

(c) The state |φ〉 is a normalized eigenstate of Â, with the corresponding
eigenvalue being λ. What is the expectation value of Â in this state?
(Prove/derive your answer.)

Hints / Solution / Discussion →
Since Â |φ〉 = λ |φ〉, we get

〈φ| Â |φ〉 = 〈φ|λ |φ〉 = 〈φ|λ |φ〉 = λ〈φ
∣∣φ〉 = λ · 1 = λ

We have used the fact that |φ〉 is normalized, 〈φ
∣∣φ〉 = 1.

4. For a spin-1/2 system, the operators for the components of spin are

Sx =
~
2
σx Sz =

~
2
σz Sz =

~
2
σz

(a) Find the eigenvalues and eigenvectors of Sz. How are they related to
the eigenvalues and eigenvectors of σz?

Hints / Solution / Discussion →
One can re-do an eigenproblem calculation. Alternatively, since
we know the eigenvalues and eigenvectors of σz, we can use that
information.
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Since Sz = ~
2
σz = ~

2

(
1 0
0 −1

)
, the eigenvalues of Sz are ~/2 times the

eigenvalues of σz, i.e.,

+
~
2

and − ~
2

The corresponding eigenvectors are the same as the eigenvectors of σz.

(b) If our two-level system is in the state |ψ 〉 =

(
1
0

)
, then find the

expectation values of Sz and Sx.

Hints / Solution / Discussion →

〈ψ|Sz |ψ 〉 =
(
1 0

) [~
2

(
1 0
0 −1

)](
1
0

)
=

~
2

(
1 0

)(1
0

)
=

~
2

〈ψ|Sx |ψ 〉 =
(
1 0

) [~
2

(
0 1
1 0

)](
1
0

)
=

~
2

(
1 0

)(0
1

)
= 0

(c) Which one of the expectation values could you have guessed?

Hints / Solution / Discussion →
Since the state is an eigenvector of Sz, one could have known that the
expectation value is the corresponding eigenvalue, hance ~/2.

The Sx eigenvalue being zero could also be guessed from physical
considerations. In a measurement of Sx, one can only obtain the
result ~/2 or −~/2, because those are the eigenvalues of Sx. One
could guess that an eigenvector of Sz will not prefer one of the Sx
values over the other. (Very roughly, this reflects the intuition that
that the z direction should not have a preference between +x and
−x directions.) Hence, one could guess equal probabilities to find the
values ~/2 or −~/2. This means the expectation value is midway
between these values, hence zero.

(d) Find the commutation relations between the operators Sx, Sy and Sz.
(You may use the results for commutators of Pauli matrices.)

Hints / Solution / Discussion →

[Sx, Sy] = i~Sz , [Sy, Sx] = i~Sx , [Sz, Sx] = i~Sy
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5. When electromagnetic radiation of frequency 2×1015 Hz shines on a sample
of gold, the emitted electrons have a kinetic energy of 3.0 eV. When this
frequency is increased to 1016 Hz, the electron kinetic energy is 36.1 eV.
(This is the photoelectric effect.)

(a) How much is 1 eV of energy, in SI units? (Look up.)

Hints / Solution / Discussion →
1eV is approximately 1, 6× 10−19J. (More digits: 1, 60218× 10−19J.)

(b) Pretending that we do not know the value of Planck’s constant (h), use
the above data to estimate h in units of SI units (J-s), Use Einstein’s
energy conservation equation for the photoelectric effect.

Hints / Solution / Discussion →
Einstein’s equation:

K.E. = W + hf

so that h is the slope of the K.E. versus f line:

h ≈ (K.E.)2 − (K.E.)1
f2 − f1

=
(36.1− 3.0)eV

(1016 − 2× 1015)Hz

=
(33.1)× 1.6× 10−19J

(8× 1015)s−1
= 6.62× 10−34J.s

(c) Use the above data to find the work function of gold, in eV and also
in Joules. (You don’t necessarily need the value of h for this, but if
you want you can use h = 6.626 × 10−34 J-s.) What does the work
function physically represent?

Hints / Solution / Discussion →
Calculation left as an exercise.

Physically, the work function represents the minimal amount of energy
required by an electron to be able to leave the surface of the metal.
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6. Look up the properties of the Dirac delta function. If a is a positive real
number, write down the values of the following integrals.

(a)

∫ a

−a
dx δ(x) (b)

∫ 2a

a

dx δ(x) (c)

∫ a

−a
dx δ(x)f(x)

(d)

∫ 2a

a

dx δ(x)f(x) (e)

∫ a

−a
dx δ(x− 2a)

(f)

∫ a

−a
dx δ(x− 2a)f(x) (g)

∫ 3a

0

dx δ(x− 2a)f(x)

Hint: plotting the integrand in the region within the limits of integration
is often helpful.

Hints / Solution / Discussion →
The Dirac delta function is zero everywhere except when it’s argument is
zero. Thus, δ(x) is zero everywhere except for at x = 0, and δ(x − 2a) is
zero everywhere except for the point x = 2a. If the integration interval
does not include this point, then the integral should be zero.

At the point where its argument vanishes, the delta function is difficult to
describe. You can think of it as being infinite at that point only, in a way
that integration over the function gives 1. There are various ways to think
about the delta function — please do some reading about it.∫ a

−a
dx δ(x) = 1

∫ 2a

a

dx δ(x) = 0

In this case, the nonzero part of the Dirac delta function falls outside the
range of integration. Draw a cartoon of the delta function, and mark the
region of integration on the same plot, to convince yourself of this.∫ a

−a
dx δ(x)f(x) = f(0)

∫ 2a

a

dx δ(x)f(x) = 0

∫ a

−a
dx δ(x− 2a) = 0
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In this case again, the nonzero part of the Dirac delta function falls outside
the range of integration. Draw a cartoon of the delta function: the infinite
peak should be at x = 2a. This falls outside the region of integration,
which is (−a, a). ∫ a

−a
dx δ(x− 2a)f(x) = 0

∫ 3a

0

dx δ(x− 2a)f(x) = f(2a)


