Due on Friday, October 23rd.

1. Matrices (or operators) might not commute with each other. This means, if \hat{A} and \hat{B} are matrices (or operators), $\hat{A} \hat{B}$ might be unequal to $\hat{B} \hat{A}$. We define the commutator of two matrices (or two operators) \hat{A} and \hat{B} as

$$
[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}
$$

Sometimes operators acting on functions are written with a hat, as I've done here. Operators acting on finite vectors, i.e., matrices, are usually written without a hat. Let's use the hat notation for this problem.
(a) $[\mathbf{2}$ pts. $]$ Show that $[\hat{B}, \hat{A}]=-[\hat{A}, \hat{B}]$.
(b) $[$ SELF $]$ Show that $[\hat{A}, \hat{B}+\hat{C}]=[\hat{A}, \hat{B}]+[\hat{A}, \hat{C}]$.
(c) $[4$ pts. $]$ Show that $[\hat{A}, \hat{B} \hat{C}]=[\hat{A}, \hat{B}] \hat{C}+\hat{B}[\hat{A}, \hat{C}]$.
2. (a) $[\mathbf{0} \mathbf{~ p t s .}]$ Look up the three Pauli matrices, denoted as $\sigma_{x}, \sigma_{y}, \sigma_{z}$, and write them down, (Each one is a 2×2 matrix.)
(b) $[4 \mathrm{pts}$.$] Calculate \left[\sigma_{x}, \sigma_{y}\right]$ and express it in terms of σ_{z}.
(c) [2 pts.] Look up (or calculate or guess correctly) $\left[\sigma_{y}, \sigma_{z}\right]$ in terms of σ_{x}, and $\left[\sigma_{z}, \sigma_{x}\right]$ in terms of σ_{y}. No need to show calculations; just report the results.
(d) [7 pts.] Find the eigenvalues and (normalized) eigenvectors of σ_{x}.
(e) [SELF] Find the eigenvalues and (normalized) eigenvectors of σ_{z}.
(f) [SELF] Is it easier to find eigenvalues \& eigenvectors if the matrix is diagonal? Why?
3. (a) In Charles Nash's notes (linked on module webpage): Read Section 5 of Chapter III, on 'Expectation Values'. Begins on page 42.
(b) [0 pts.] Define the expectation value of an observable represented by operator \hat{A}, when the system state is $|\psi\rangle$.
(c) [6 pts.] The state $|\phi\rangle$ is an eigenstate of \hat{A}, with the corresponding eigenvalue being λ. What is the expectation value of \hat{A} in this state? (Prove/derive your answer.)
4. For a spin- $1 / 2$ system, the operators for the components of spin are

$$
S_{x}=\frac{\hbar}{2} \sigma_{x} \quad S_{y}=\frac{\hbar}{2} \sigma_{y} \quad S_{z}=\frac{\hbar}{2} \sigma_{z}
$$

(a) [6 pts.] Find the eigenvalues and eigenvectors of S_{z}. How are they related to the eigenvalues and eigenvectors of σ_{z} ?
(b) [$\mathbf{6}$ pts.] If our two-level system is in the state $|\psi\rangle=\binom{1}{0}$, then find the expectation values of S_{z} and S_{x}.
(c) [SELF] Which one of the expectation values could you have guessed?
(d) $[$ SELF $]$ Find the commutation relations between the operators S_{x}, S_{y} and S_{z}. (You may use the results for commutators of Pauli matrices.)
5. Photoelectric effect: When electromagnetic radiation of frequency 2×10^{15} Hz shines on a sample of gold, the emitted electrons have a kinetic energy of 3.0 eV . When this frequency is increased to $10^{16} \mathrm{~Hz}$, the electron kinetic energy is 36.1 eV .
(a) [0 pts.] How much is 1 eV of energy, in SI units?
(b) [6 pts.] Pretending that we do not know the value of Planck's constant (h), use the above data to estimate h in SI units (J-s), Use Einstein's energy conservation equation for the photoelectric effect.
(c) [SELF] Use the above data to find the work function of gold, in eV and also in Joules. (You don't necessarily need the value of h for this, but if you want you can use $h=6.626 \times 10^{-34} \mathrm{~J}$-s.) What does the work function physically represent?
6. [7 pts.] Look up the properties of the Dirac delta function. If a is a positive real number, write down the values of the following integrals.
(a) $\int_{-a}^{a} d x \delta(x)$
(b) $\int_{a}^{2 a} d x \delta(x)$
(c) $\int_{-a}^{a} d x \delta(x) f(x)$
(d) $\int_{a}^{2 a} d x \delta(x) f(x)$
(e) $\int_{-a}^{a} d x \delta(x-2 a)$
(f) $\int_{-a}^{a} d x \delta(x-2 a) f(x)$
(g) $\int_{0}^{3 a} d x \delta(x-2 a) f(x)$

Hint: plotting the integrand in the region within the limits of integration is often helpful.

