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−−−−−−−−−−−−− ?−−−−−−−−−−−−
� Integrals you might need:∫ π

0

du sin2 u =
π

2
,

∫ π

0

du u sin2 u =
π2

4
,

∫ π

0

du u2 sin2 u =
π3

6
−π

4
.

� Suggestions for this assignment:
(1) (Re-)read the section on Expectation Values (3.5) in Nash’s notes.
(2) Read about spin-1/2 systems. A couple of links appear on the module
webpage.

−−−−−−−−−−−−− ?−−−−−−−−−−−−

1. A particle is confined in the one-dimensional region between x = 0 to

x = L. It is in the stationary state ψ =

√
2

L
sin(πx/L).

(a) Show that the wavefunction is normalized.

Hint/Solution/Discussion →
The square of the norm of the wavefunction is

〈ψ
∣∣ψ〉 =

∫ L

0

dx
∣∣ψ(x)

∣∣2
The integral runs only from x = 0 to x = L because the particle is
confined in the region between x = 0 and x = L. You can think of
this as being due to the fact that ψ(x) vanishes everywhere outside
this region:

〈ψ
∣∣ψ〉 =

∫ ∞
−∞

dx
∣∣ψ(x)

∣∣2
=

∫ 0

−∞
dx
∣∣ψ(x)

∣∣2 +

∫ L

0

dx
∣∣ψ(x)

∣∣2 +

∫ ∞
L

dx
∣∣ψ(x)

∣∣2
= 0 +

∫ L

0

dx
∣∣ψ(x)

∣∣2 + 0 =

∫ L

0

dx
∣∣ψ(x)

∣∣2.
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We are supposed to check that the given wavefunction is normalized,
i.e, that 〈ψ

∣∣ψ〉 = 1. So let’s check:

∫ L

0

dx
∣∣ψ(x)

∣∣2 =
2

L

∫ L

0

dx sin2
(πx
L

)
=

2

L

∫ u=L

u=0

Ldu

π
sin2(u)

=
2

π

∫ u=π

u=0

du sin2(u) =
2

π

π

2
= 1.

The integral was done above using the variable substitution x = Lu/π.
Hopefully you are able to do the integral in other ways, for example,
by plotting the integrand and examining the symmetries of your plot.
(Discussed in class.)

-=-=-=-= * =-=-=-=-

(b) Find 〈x̂〉, the expectation value of the position of the particle. (You
should be able to guess the answer before doing the calculation.)

Hint/Solution/Discussion →
Let’s guess first. The wavefunction is spread between x = 0 and x = L.
So the average value of x is probably the midpoint of this interval. Do
we expect x = L/2? Let’s see:

〈x̂〉 = 〈ψ| x̂ |ψ 〉 =

∫ L

0

dxψ∗(x)x̂ψ(x)

=

∫ L

0

dxψ∗(x)xψ(x) =

∫ L

0

dx x
∣∣ψ(x)

∣∣2
=

2

L

∫ L

0

dx x sin2
(πx
L

)
=

2

L

(
L

π

)2 ∫ π

0

du u sin2 u

=
2

L

(
L

π

)2
π2

4
=
L

2

-=-=-=-= * =-=-=-=-
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(c) Find the uncertainty of the position, i.e., ∆x =
√
〈x̂2〉 − 〈x̂〉2.

Hint/Solution/Discussion →
Let’s try guessing first. The wavefunction extends from 0 to L, i.e., the
possible values of the particle position extends along this region. So
the uncertainty in position should be of the order L. In other words,
it is some constant value times L. This constant value could be 1 or
2 or 1/2 or π or some combination thereof. It’s difficult (impossible?)
to say what this constant is without explicitly calculating ∆x. But we
can infer, even before calculation, that the form is a constant times L.

To calculate ∆x, we need both 〈x̂2〉 and 〈x̂〉. We’ve already calculated
〈x̂〉 to be 〈x̂〉 = L/2. Let’s calculate the expectation value of x̂2:

〈x̂2〉 = 〈ψ| x̂2 |ψ 〉 =

∫ L

0

dxψ∗(x)x̂2ψ(x)

=

∫ L

0

dx x2
∣∣ψ(x)

∣∣2 =
2

L

∫ L

0

dx x2 sin2
(πx
L

)
=

2

L

(
L

π

)3 ∫ π

0

du u2 sin2 u =
2L2

π3

(
π3

6
− π

4

)
=

L2

3
− L2

2π2

Putting this all together

(∆x)2 = 〈x̂2〉 − 〈x̂〉2 =
L2

3
− L2

2π2
− L2

4

=
L2

12
− L2

2π2
=

(
1

12
− 1

2π2

)
L2

Thus the position uncertainty is

∆x =

√
1

12
− 1

2π2
L

This is consistent with our guess: a dimensionless constant times L.
The constant multiplying L appears to be quite small:(

1

12
− 1

2π2

)1/2

≈ 0.181

-=-=-=-= * =-=-=-=-
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(d) Find the expectation value of the momentum of the particle.

Warning: ψ∗(x)p̂ψ(x) 6= p̂|ψ(x)|2. Why not?

(You should be able to guess the answer before doing the calculation.)

Hint/Solution/Discussion →
Guessing: The particle is confined to a region. If it had a nonzero
average momentum, surely it would move away from this region, and
not be confined. So we expect the momentum expectation value to be
zero.

To calculate the expectation value of the momentum, first recall that
the momentum operator is given by

p̂ = − i~ d
dx

=
~
i

d

dx
= − i~∂x =

~
i
∂x

Here ∂x is shorthand for the derivative operator
d

dx
. If the wavefunc-

tion depends on other variables, e.g., time, you would also be justified

in writing the operator as
∂

∂x
. i.e., whether it is a full derivative or

a partial derivative depends on the context. Making this distinction
is usually not important in quantum mechanics, so it doesn’t matter
much which of these notations you use.

The expectation value is

〈p̂〉 = 〈ψ| p̂ |ψ 〉 =

∫ L

0

dxψ∗(x)p̂ψ(x)

=

∫ L

0

dxψ∗(x)

(
~
i
∂x

)
ψ(x) =

~
i

∫ L

0

dxψ∗(x) ∂xψ(x)

=
~
i

∫ L

0

dxψ∗(x)ψ′(x)

�
�

�
Note: Please convince yourself that

ψ∗(x)p̂ψ(x) is NOT equal to p̂|ψ(x)|2.

Notation comment: the asterisk means complex conjugation, while the
prime means taking the derivative. Some of you prefer an over-bar for
complex conjugation, instead of an asterisk. That’s perfectly okay, of
course.
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Using ψ(x) =

√
2

L
sin(πx/L) we get for the given wavefunction

〈p̂〉 =
~
i

∫ L

0

dx

√
2

L
sin(πx/L)

√
2

L

π

L
cos(πx/L)

=
~
i

2π

L2

∫ L

0

dx sin(πx/L) cos(πx/L) =
~
i

π

L2

∫ L

0

dx sin

(
2πx

L

)
=

~
i

π

L2

L

2π

∫ 2π

0

du sin (0) = 0.

We ended up with an integral of the sine function over a full period,
which is zero. (Plot the sine function to make sure you see this
visually.)

-=-=-=-= * =-=-=-=-

(e) Find the uncertainty of the momentum.

Hint/Solution/Discussion →
To calculate

∆p =
√
〈p̂2〉 − 〈p̂〉2 =

√
〈p̂2〉 − 0 =

√
〈p̂2〉

we need to calculate 〈p̂2〉, i.e., the expectation value of the operator

p̂2 = p̂p̂ =
~
i
∂x

~
i
∂x = − ~2∂2x

Here ∂2x is shorthand for the double-derivative operator
d2

dx2
.

Let’s calculate the expectation value of this operator:

〈p̂2〉 = 〈ψ| p̂2 |ψ 〉 = − ~2
∫ L

0

dxψ∗(x)∂2xψ(x)

= − ~2
∫ L

0

dxψ∗(x)ψ′′(x)
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Using ψ(x) =

√
2

L
sin(πx/L) we get

〈p̂2〉 = − ~2
∫ L

0

dx

√
2

L
sin(πx/L)

√
2

L

π2

L2

(
− sin(πx/L)

)
= + ~2

2π2

L3

∫ L

0

dx sin2(πx/L) =
2π2~2

L3

L

π

∫ π

0

du sin2(u)

=
2π2~2

L3

L

π

π

2
=

π2~2

L2

As discussed before, the integral is π/2.

Thus

∆p =
√
〈p̂2〉 − 02 =

π~
L

-=-=-=-= * =-=-=-=-

(f) How does the position uncertainty depend on L? Could you have
expected this?

Hint/Solution/Discussion →
This is discussed in the question where we calculated ∆x. We
guessed/argued that ∆x should be a dimensionless constant times L,
i.e., proportional to L. Restating the argument:

The particle is confined in the region (0, L), hence a position
measurement can give any value between 0 and L. We therefore expect
the uncertainty in a position measurement to be proportional to L.

We cannot however predict the constant of proportionality from a
physical argument like this; an explicit calculation is required. Indeed
we have found above that ∆x is a cumbersome number times L.

-=-=-=-= * =-=-=-=-



MP363, Problem set 05, some solutions/hints page 7

(g) Does the momentum uncertainty increase or decrease, if L is in-
creased? Explain whether/how this is consistent with the Heisenberg
uncertainty principle.

Hint/Solution/Discussion →
The momentum uncertainty ∆p varies inversely with L, i.e., is
proportional to 1/L.

The Heisenberg uncertainty principle predicts that

∆x∆p & ~ =⇒ ∆p &
~

∆x

The ∼ part of & indicates that these inequalities become precise with
some constant, which we don’t know or can’t be bothered with at the
moment. For microscopic states, we can replace the & by ∼:

∆p ∼ ~
∆x

Since ∆x ∼ L, we expect

∆p ∼ ~
L

i.e., ∆p is a dimensionless constant times ~/L.

Indeed we have found ∆p to be π times ~/L.

-=-=-=-= * =-=-=-=-
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(h) If the energy (Hamiltonian) operator is Ĥ = p̂2

2m
, find the expectation

value and the uncertainty of the energy.

Hint/Solution/Discussion →
The expectation value is

〈Ĥ〉 = 〈 p̂
2

2m
〉 =

〈p̂2〉
2m�� ��(Perhaps silly) question: why can’t you replace 〈p̂2〉 by 〈p̂〉2?

Good thing we already calculated 〈p̂2〉 to be π2~2/L2.

〈Ĥ〉 =
π2~2/L2

2m
=

π2~2

2mL2

From your study of the infinite square well, you might have known this
answer. The given wavefunction is the ground state wavefunction of
the infinite square well whose Hamiltonian is Ĥ = p̂2

2m
within the well.

Hence the expectation value of Ĥ in this state gives us the ground
state energy, which has the expression above.

Could we have otherwise guessed the energy, at least up to a constant? Use
dimensional analysis. You can figure out that the only combination of ~, mass
and distance which has the dimension of energy is ~/(mL2). This implies that
energy is expected to be some constant times ~/(mL2).

The uncertainty of the energy is left as an exercise. For this calculation
you have to evaluate 〈p̂4〉, which is very similar to the calculation of
〈p̂2〉 that we already did.

Explain physically why the uncertainty of the energy is
expected to be zero for the given wavefunction.

-=-=-=-= * =-=-=-=-
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2. Recall for a spin-1/2 system:

Sx =
~
2

(
0 1
1 0

)
Sy =

~
2

(
0 −i
i 0

)
Sz =

~
2

(
1 0
0 −1

)
Each of these matrices have two eigenvalues, in each case +~/2 and −~/2.

(a) Why does it make sense physically that the three operators have
the same set of eigenvalues? (What’s the connection between
measurement results and eigenvalues?)

Hint/Solution/Discussion →
The choice of which direction to call x, y or z is arbitrary. Thus. the
three components should have the same possible values in physical
measurement. Hence the three operators should have the same set of
eigenvalues.

-=-=-=-= * =-=-=-=-

(b) For Sx, verify the statement about eigenvalues above i.e., calculate
eigenvalues of the Sx matrix.

Hint/Solution/Discussion →

Eigenvalues of Sx =

(
0 ~/2

~/2 0

)
are the solutions of the determinant

equation∣∣∣∣( 0 ~/2
~/2 0

)
− λ

(
1 0
0 1

)∣∣∣∣ = 0 =⇒
∣∣∣∣−λ ~/2
~/2 −λ

∣∣∣∣ = 0

=⇒ (−λ)2 −
(
~
2

)2

= 0 =⇒ λ2 =

(
~
2

)2

The eigenvalues are therefore +
~
2

and −~
2

.

If you are not 100% comfortable with calculating eigenvalues fast,
please review the technique asap. For practice, calculate the eigenval-

ues of the matrix

0 1 0
1 0 1
0 1 0

.
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-=-=-=-= * =-=-=-=-

(c) The eigenvector of Sx corresponding to the eigenvector +~/2 is

|x,+〉 =

(
α
α

)
. Calculate α so that the state is normalized. You

can choose α to be real and positive.

Hint/Solution/Discussion →

2|α|2 = 1 =⇒ α =
1√
2

Taking α to be real and positive.

You should of course check that |x,+〉 is indeed an eigenvector of Sx
as claimed, by calculating the matrix-vector product Sx |x,+〉.

-=-=-=-= * =-=-=-=-

(d) Calculate the expectation value of Sx in the state |x,+〉, i.e., calculate
〈Sx〉 = 〈x,+|Sx |x,+〉. (You should be able to predict the answer
before doing the calculation.)

Hint/Solution/Discussion →

〈Sx〉 = 〈x,+|Sx |x,+〉 =
(
α∗ α∗

)( 0 ~/2
~/2 0

)(
α
α

)
=
(
α∗ α∗

)(α~/2
α~/2

)
= 2|α|2~

2
=

~
2

Since |x,+〉 is an eigenstate of Sx, a measurement of this observable
will give the corresponding eigenvalue, i.e., we are sure to get the
result +~/2 in a measurement of the x-component of spin. So, the
expectation value of the Sx operator should be +~/2, as we found,
and the uncertainty should be zero (next problem).

-=-=-=-= * =-=-=-=-
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(e) Calculate the uncertainty of Sx in the state |x,+〉. (You should be
able to guess the answer before doing the calculation.)

Hint/Solution/Discussion →
We need to calculate

√
〈S2

x〉 − 〈Sx〉2.
Note that the operator (or matrix) S2

x is obtained by a matrix
multiplication.

S2
x =

~
2

(
0 1
1 0

)
~
2

(
0 1
1 0

)
=

~2

4

(
1 0
0 1

)
Please note that this is NOT the same as squaring each element of Sx,
i.e.,

S2
x 6=

(
0 ~2/4

~2/4 0

)
Therefore

〈S2
x〉 = 〈x,+|S2

x |x,+〉 =
~2

4

(
α∗ α∗

)(1 0
0 1

)(
α
α

)
=

~2

4

(
α∗ α∗

)(α
α

)
=

~2

4
2|α|2 =

~2

4

Thus the uncertainty is

√
〈S2

x〉 − 〈Sx〉2 =

√
~2
4
−
(
~
2

)2

= 0

as expected.

-=-=-=-= * =-=-=-=-

(f) Calculate the expectation value of Sz in the state |x,+〉. (You might
be able to guess the answer before doing the calculation.)

Hint/Solution/Discussion →
What do we expect? |x,+〉 is an eigenstate of Sx, not of Sz. It’s
reasonable to assume that the |x,+〉 state does not prefer either a
+~/2 or a −~/2 as the result for a measurement of Sz. (These are
the only two outcomes of a Sz measurement.) So, one expects equal
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probabilites for these two possible outcomes, if Sz is measured in the
|x,+〉 state. One can thus expect the expectation value of Sz to be
the average of these two values, i.e., 0. Let’s see if this works:

〈Sz〉 = 〈x,+|Sz |x,+〉 =
(
α∗ α∗

)(~/2 0
0 −~/2

)(
α
α

)
=
(
α∗ α∗

)( α~/2
−α~/2

)
= |α|2~

2
− |α|2~

2
= 0

-=-=-=-= * =-=-=-=-

(g) Calculate the uncertainty of Sz in the state |x,+〉.

Hint/Solution/Discussion →
One expects this to be nonzero, since outcomes +~/2 and −~/2 are
equally probably. I can’t however predict the exact value without
doing the calculation.

Note that S2
z =

~
2

(
0 1
1 0

)
~
2

(
0 1
1 0

)
=

~2

4

(
1 0
0 1

)
= S2

x. Thus

〈S2
z 〉 = 〈S2

x〉 =
~2

4

The uncertainty is

∆Sz =
√
〈S2

z 〉 − 〈Sz〉2 =

√
~2
4
− 02 =

~
2

-=-=-=-= * =-=-=-=-


