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Some partial solutions and/or hints are given below.

As usual, there might be typos, so please use with care.

−−−−−−−−−−−−− ?−−−−−−−−−−−−

1. A particle in a 1D harmonic oscillator: eigenstates.

For a single particle in a harmonic oscillator potential V (x) = 1
2
mω2,

the time-independent Schroedinger equation has an infinite number of
eigenvalue/eigenfunction pairs. The lowest three energy eigenvalues are

E0 =
1

2
~ω, E1 =

3

2
~ω, E2 =

5

2
~ω. The corresponding eigenfunctions are

respectively

φ0(x) = A0 e
−x2/2σ2

, φ1(x) = A1 x e
−x2/2σ2

,

φ2(x) = A2

(
2x2

σ2
− 1

)
e−x

2/2σ2

. Here σ2 =
~
mω

.

(a) Sketch (by hand) plots of the three functions φn(x) for n = 0, n = 1,
n = 2. You may use a computer program if you want to figure out
how these functions look like, but please submit hand-drawn sketches.

By looking at the three plots and observing the pattern, guess and
sketch the plots of the next two eigenstates, φ3(x) and φ4(x).

Solution/Hints/Discussion →
As we increase n, the eigenfunctions have more and more ’nodes’, i.e.,
zeros. The n = 0 case is the gaussian, which has no nodes. The next
eigenfunctions have one, two, three, four,.... nodes.

-=-=-=-= * =-=-=-=-

(b) Look up (or calculate, or ask a computer algebra system or online
integrator) the integrals ∫ +∞

−∞
x2ne−x

2

dx

for n = 0, n = 1, n = 2. Report the three results.

The first one (n = 0, integral over a Gaussian) is important enough
that you might consider learning it for life. (You should certainly know
how to derive it!)
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Solution/Hints/Discussion →

∫ +∞

−∞
e−x

2

dx =
√
π

∫ +∞

−∞
x2e−x

2

dx =

√
π

2∫ +∞

−∞
x4e−x

2

dx =
3
√
π

4

-=-=-=-= * =-=-=-=-

(c) Calculate the integrals∫ +∞

−∞
x2n exp

[
− x2

2σ2

]
dx

for n = 0, n = 1, n = 2, based on the results of the previous question.

Solution/Hints/Discussion →
You can calculate these through a variable substitution, say u =
x/(
√

2σ).

∫ +∞

−∞
exp

[
− x2

2σ2

]
dx =

√
2πσ∫ +∞

−∞
x2 exp

[
− x2

2σ2

]
dx =

√
2πσ3∫ +∞

−∞
x4 exp

[
− x2

2σ2

]
dx = 3

√
2πσ5

For the harmonic oscillator, one might also need the related integrals
where the argument of the exponential is−x2/σ2 instead of−x2/(2σ2).
Hopefully, you can convince yourself that

∫ +∞

−∞
exp

[
−x

2

σ2

]
dx =

√
πσ∫ +∞

−∞
x2 exp

[
−x

2

σ2

]
dx =

√
π

2
σ3∫ +∞

−∞
x4 exp

[
−x

2

σ2

]
dx =

3
√
π

4
σ5
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We will be using some of these later on.

-=-=-=-= * =-=-=-=-

(d) Use symmetry arguments to evaluate the integral∫ +∞

−∞
x2n+1 exp

[
− x2

2σ2

]
dx

for any integer n. The integrand is an odd function.

Solution/Hints/Discussion →
ZERO

Why? If you plot the integrand for any integer n (try n = 0 or n = 1),
you will find that area under the curve for positive x values (right
half of your plot) is exactly canceled by the area under the curve for
negative x values (left half of your plot). Hence the total integral is
zero.

The integrand is an odd function of x, i.e., it has the form f(−x) =
−f(x). The integral of any odd function over (−∞,∞) is zero, as the
integral over (−∞, 0) cancels the integral over (0,∞).

-=-=-=-= * =-=-=-=-

(e) Show that φ0 and φ1 are orthogonal to each other, as are φ1 and φ2,
and finally that φ0 and φ2 are orthogonal to each other.

Solution/Hints/Discussion →

φ0(x)φ1(x) is an odd function of x. Hence

∫ ∞
−∞

dxφ0(x)φ1(x) = 0.

φ1 and φ2 are orthogonal for the same reason.

φ0 and φ2: the integrand is not odd, so this needs more work:∫ ∞
−∞

dx φ0(x)φ2(x) = A0A2

∫ ∞
−∞

dx e−x
2/2σ2

(
2x2

σ2
− 1

)
e−x

2/2σ2

= A0A2

[
2

σ2

∫ ∞
−∞

dx x2e−x
2/σ2 −

∫ ∞
−∞

dx e−x
2/σ2

]
= A0A2

[
2

σ2

(√
π

2
σ3

)
−
√
πσ

]
= 0
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-=-=-=-= * =-=-=-=-

(f) Show in general that, if |w1 〉 and |w2 〉 are eigenstates of a hermitian
operator corresponding to distinct eigenvalues, then they are orthog-
onal to each other. (This is an important result.)

Solution/Hints/Discussion →
Let the operator be Â, and the corresponding eigenvalues be a1 and
a2:

Â |w1 〉 = a1 |w1 〉 Â |w2 〉 = a2 |w2 〉

Since Â is hermitian, Â = Â†. Also, a1 and a2 are real. So, the first
equation gives the dual relation:

〈w1| Â† = a∗1〈w1| =⇒ 〈w1| Â = a1〈w1|

Applying 〈w1| on the second eigenvalue equation:

〈w1| Â |w2 〉 = 〈w1| a2 |w2 〉 =⇒ a1〈w1

∣∣w2〉 = a2〈w1

∣∣w2〉

Since a1 6= a2, this implies 〈w1

∣∣w2〉 = 0, i.e., that the two kets are
orthogonal to each other.

This is really a very important result; please make sure you can
reproduce the proof. E.g., using the fact that the Hamiltonian is
hermitian, prove that eigenstates corresponding to different eigen-
energies are orthogonal to each other.

-=-=-=-= * =-=-=-=-

(g) Calculate A0 so that φ0 is normalized.

Solution/Hints/Discussion →∫ ∞
−∞

dx|φ0(x)|2 = |A0|2
∫ ∞
−∞

dx exp

[
−x

2

σ2

]
dx = |A0|2

√
πσ

Normalization requires the norm above to be unity.
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If you assume A0 to be real and positive (why would you assume
that?), then you would write

A0 =
1√√
πσ

=
1

π1/4σ1/2

Of course this is not general. If we want to avoid assuming that A0

is real and positive, we can keep our result general with the help of a
phase factor:

A0 =
eiλ

π1/4σ1/2

{
where λ is an

arbitrary real number

or we can just write the norm of A0 and admit that we don’t have a
way to determine the phase of sign of A0:

|A0| =
1√√
πσ

=
1

π1/4σ1/2

-=-=-=-= * =-=-=-=-

(h) Calculate A1 and A2 so that φ1 and φ2 are normalized.

Solution/Hints/Discussion →
A1 is calculated similarly:

|A1| =

√
2√
πσ

=

√
2

π1/4σ3/2

A2 is calculated similarly as above, but much more tedious. I believe
the answer should be

|A2| =

√
1√
π2σ

=
1

π1/4(2σ)1/2

-=-=-=-= * =-=-=-=-
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(i) Construct a solution of the TDSE, based on the three eigenfunctions
of the time-independent SE.

Solution/Hints/Discussion →
The solutions of the TDSE corresponding to the three time-independent
wavefunctions are

φ0(x)e−E0t/~ = φ0(x)e−
1
2
ωt

φ1(x)e−E1t/~ = φ1(x)e−
3
2
ωt

φ2(x)e−E2t/~ = φ2(x)e−
5
2
ωt

The general solution is

Bφ0(x)e−
1
2
ω0t + Cφ1(x)e−

3
2
ω0t + Dφ2(x)e−

5
2
ω0t

-=-=-=-= * =-=-=-=-

(j) At time t = 0, the particle in the harmonic oscillator finds itself in the
state

ψ(x, 0) =
1√
2
φ0(x) − 1

2
φ1(x) +

1

2
φ2(x) .

What is the wavefunction (state) ψ(x, t) at a later time t?

Solution/Hints/Discussion →
Comparing with the general solution written above, we see that the
given initial state fixes the constants B, C, D. Thus the wavefunction
at arbitrary later time is given by

ψ(x, t) =
1√
2
φ0(x)e−

1
2
ωt − 1

2
φ1(x)e−

3
2
ωt +

1

2
φ2(x)e−

5
2
ωt

-=-=-=-= * =-=-=-=-
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(k) If the φn(x) functions are normalized, then show that ψ(x, 0) is
normalized, and that ψ(x, t) remains normalized at later times t.

Solution/Hints/Discussion →
This is a very instructive excercise, which I leave for you to do.

You will also have to use the fact that the φn(x) functions are
orthogonal to each other. You will not have to do any integrals.

-=-=-=-= * =-=-=-=-

(l) This is a good time to have a first browse through Nash Chapter 4 (The
harmonic oscillator), or the wikipedia page on “Quantum Harmonic
Oscillator”.

2. Let |φn 〉 be the orthonormalized energy eigenstate of a particle of mass m
in an infinite square well of width a, with corresponding energy eigenvalue

En =
n2π2~2

2ma2
, n = 1, 2, 3, ...

The particle is prepared to be in the state

|ψ 〉 =
∞∑
n=1

α

n2
|φn 〉

where α is a positive real number.

(a) You might need the series

∞∑
n=1

1

n4
=

π4

90
,

∞∑
n=1

1

n2
=

π2

6

Feel free to have fun deriving these two series sums.

Solution/Hints/Discussion →

-=-=-=-= * =-=-=-=-
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(b) Show that |ψ 〉 is normalized if α =
√

90/π4.

Solution/Hints/Discussion →
Since the |φn 〉 are orthonormalized,

〈φm
∣∣φn〉 = δmn

The norm of the state |ψ 〉 =
∑ α

n2
|φn 〉 is therefore

〈ψ|ψ〉 =

(
∞∑
n=1

α∗

n2
〈φn|

)(
∞∑
n=1

α

n2
|φn 〉

)

=

(
∞∑
l=1

α∗

l2
〈φl|

)(
∞∑
n=1

α

n2
|φn 〉

) {
Changed a dummy variable

to avoid confusion

=
∞∑
l=1

∞∑
n=1

α∗

l2
α

n2
〈φl
∣∣φn〉 = |α|2

∞∑
l=1

∞∑
n=1

1

l2
1

n2
δln

If we perform the summation over n, only the term n = l survives, by
definition of the Kronecker delta δln. Hence

〈ψ|ψ〉 = |α|2
∞∑
l=1

1

l2
1

l2
= |α|2

∞∑
l=1

1

l4
= |α|2π

4

90

The result π4/90 for the infinite series is given in the exam paper.

To be normalized, we require the norm to be 1; hence

|α|2 =
90

π4
=⇒ α =

3
√

10

π2
× phase factor

-=-=-=-= * =-=-=-=-

(c) Find the expectation value of the Hamiltonian for this state.

Solution/Hints/Discussion →
Since the |φn 〉 are energy eigenstates,

Ĥ |φn 〉 = En |φn 〉 〈φl| Ĥ |φn 〉 = En〈φl
∣∣φn〉 = Enδln
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The expectation value of energy is

〈ψ| Ĥ |ψ 〉 =

(
∞∑
n=1

α∗

n2
〈φn|

)
Ĥ

(
∞∑
n=1

α

n2
|φn 〉

)

=

(
∞∑
l=1

α∗

l2
〈φl|

)
Ĥ

(
∞∑
n=1

α

n2
|φn 〉

) {
using different summation variables

to avoid confusion

=
∞∑
l=1

∞∑
n=1

α∗

l2
α

n2
〈φm| Ĥ |φn 〉 = |α|2

∞∑
l=1

∞∑
n=1

1

l2
1

n2
Enδln

= |α|2
∞∑
l=1

El
l4

=
90

π4

∞∑
l=1

El
l4

=
90

π4

∞∑
n=1

En
n4

Using En =
π2~2

2ma2
n2, we obtain

〈ψ| Ĥ |ψ 〉 =
45~2

ma2π2

∞∑
n=1

1

n2
=

45~2

ma2π2

π2

6
=

15~2

2ma2

-=-=-=-= * =-=-=-=-

(d) What is the probability that a measurement of the energy gives
2π2~2/ma2, and if this energy is found, what state is the particle
in immediately afterwards?

Hint: This question is about measurement in quantum mechanics. For
guidance, you could try reading the first few sections of the wikipedia
page on “Measurement in Quantum Mechanics”, and Sections 3.2
and 3.3 of Nash notes. There is also a paragraph summarizing
measurement in the writeup “Essentials of QM”, linked on the
webpage.

Solution/Hints/Discussion →
A measurement of energy results necessarily in one of the eigenvalues,
En. The probability of finding the energy En, i.e., the probability of
finding the system in the state |φn 〉, is |〈φn

∣∣ψ〉|2. Equivalently, if the
state |ψ 〉 is expanded in the eigenstates |φn 〉, the mod-sqaure of the
coefficient of |φj 〉 gives the probability of finding the energy to be Ej.
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If the energy is found to be Ej, then the system will be in the state
|φj 〉 immediately after the measurement.

A measurement of energy will give the result

2π2~2

ma2
=

π2~2

2ma2
22 = E2

with a probability |〈φ2

∣∣ψ〉|2. Noting that

〈φ2

∣∣ψ〉 = 〈φ2|

(
∞∑
n=1

α

n2
|φn 〉

)
=

∞∑
n=1

α

n2
〈φ2

∣∣φn〉 =
∞∑
n=1

α

n2
δ2,n =

α

22

we get for the probability

∣∣〈φi∣∣ψ〉∣∣2 =
|α|2

16
=

1

16

90

π4
=

45

8π4
≈ 0.0577

If the energy is found to be E2, then the system will be in the state
|φ2 〉 immediately after the measurement.

-=-=-=-= * =-=-=-=-


