Some partial solutions and/or hints are given below. Watch out for misprints. If you catch an error, please let me know.

1. Unitary matrices and operators.
(a) Look up and report the definition of a unitary matrix.

Solution/Hints/Discussion \rightarrow

A matrix is unitary if its hermitian conjugate (adjoint) is its inverse.
U is unitary if $U^{\dagger}=U^{-1}$, i.e., if $U^{\dagger} U=U U^{\dagger}=I$.
Comment (1): The Hermitian conjugate is also known as the adjoint, or the conjugate transpose.
Comment (2): Sometimes, the conjugate transpose is also denoted with a star instead of with a dagger symbol, i.e., U^{*} instead of U^{\dagger}. (E.g., as of Nov. 2020 the star notation is used in the wikipedia page for 'Unitary Matrix'.) I strongly recommend using the dagger symbol, because in physics the star often represents the complex conjugate without transpose.

$$
\text { -=-=-=-= * }=-=-=-=-
$$

(b) Show that the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is its own inverse.

Solution/Hints/Discussion \rightarrow

A matrix A is its own inverse if $A A=I$. The matrix σ_{x} is its own inverse, because

$$
\sigma_{x} \sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
-=-=-=-=^{*}=-=-=-=-
$$

(c) Show that the three Pauli matrices are unitary.

Solution/Hints/Discussion \rightarrow

We want to show

$$
\sigma_{x} \sigma_{x}^{\dagger}=\sigma_{x}^{\dagger} \sigma_{x}=I \quad \sigma_{y} \sigma_{y}^{\dagger}=\sigma_{y}^{\dagger} \sigma_{y}=I \quad \sigma_{z} \sigma_{z}^{\dagger}=\sigma_{z}^{\dagger} \sigma_{z}=I
$$

First for σ_{x} :

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{x}^{\dagger}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\sigma_{x} \quad \Longrightarrow \quad\left\{\begin{array}{l}
\sigma_{x} \sigma_{x}^{\dagger}=\sigma_{x} \sigma_{x}=I \\
\sigma_{x}^{\dagger} \sigma_{x}=\sigma_{x} \sigma_{x}=I
\end{array}\right.
$$

using the fact that $\sigma_{x}^{2}=I$, as shown previously.
Now for σ_{y} :

$$
\sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{y}^{\dagger}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\sigma_{y} \quad \Longrightarrow \quad\left\{\begin{array}{l}
\sigma_{y} \sigma_{y}^{\dagger}=\sigma_{y} \sigma_{y}=I \\
\sigma_{y}^{\dagger} \sigma_{y}=\sigma_{y} \sigma_{y}=I
\end{array}\right.
$$

where we have used the fact that

$$
\sigma_{y} \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

And finally for σ_{z} :

$$
\sigma_{z}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}^{\dagger}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\sigma_{z} \quad \Longrightarrow \quad\left\{\begin{array}{l}
\sigma_{z} \sigma_{z}^{\dagger}=\sigma_{z} \sigma_{z}=I \\
\sigma_{z}^{\dagger} \sigma_{z}=\sigma_{z} \sigma_{z}=I
\end{array}\right.
$$

where we have used the fact that

$$
\sigma_{z} \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

(d) Show that the two-dimensional vector $\binom{\alpha}{\beta}$ has the same norm as $\sigma_{y}\binom{\alpha}{\beta}$, i.e., operating with σ_{y} keeps the norm unchanged.

Solution/Hints/Discussion \rightarrow

$$
\sigma_{y}\binom{\alpha}{\beta}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{\alpha}{\beta}=\binom{-i \beta}{i \alpha}
$$

whose norm is

$$
|-i \beta|^{2}+|i \alpha|^{2}=|\beta|^{2}+|\alpha|^{2}=|\alpha|^{2}+|\beta|^{2}
$$

This is the same as the norm of $\binom{\alpha}{\beta}$. Hence the norm is unchanged by operating with σ_{y}.
-=-=-=-= * =-=-=-=-
(e) If \hat{U} is a unitary operator, show that the state $|\psi\rangle=\hat{U}|\phi\rangle$ has the same norm as the state $|\phi\rangle$.

Solution/Hints/Discussion \rightarrow

$$
|\psi\rangle=\hat{U}|\phi\rangle \quad \Longrightarrow \quad\langle\psi|=\langle\phi| \hat{U}^{\dagger}
$$

Thus the norm of $|\psi\rangle$ is

$$
\langle\psi \mid \psi\rangle=\langle\phi| \hat{U}^{\dagger} \hat{U}|\phi\rangle=\langle\phi \mid \phi\rangle
$$

i.e., is equal to the norm of $|\phi\rangle$. Note we have used $\hat{U}^{\dagger} \hat{U}=1$.

Comment:

Note that this is abstract and general, and makes no assumption about whether the Hilbert space is finite-dimensional or infinite-dimensional. We don't need a specific formula for the norm such as $\int d x \psi^{*}(x) \psi(x)$ or $\sum_{j} \psi_{j}^{*} \psi_{j}$. The general bra-ket expression $\langle\psi \mid \psi\rangle$ is good enough.

$$
-=-=-=-=*=-=-=-=
$$

2. The state $\left|\mu_{1}\right\rangle$ is an eigenstate of \hat{M} with corresponding eigenvalue m_{1}.
(a) Show that $\left|\mu_{1}\right\rangle$ is also an eigenstate of \hat{M}^{2}, and find the corresponding eigenvalue. Show that $\left|\mu_{1}\right\rangle$ is also an eigenstate of \hat{M}^{n}, where n is an integer, and find the corresponding eigenvalue.

Solution/Hints/Discussion \rightarrow

Since $\hat{M}\left|\mu_{1}\right\rangle=m_{1}\left|\mu_{1}\right\rangle$, we have

$$
\begin{array}{r}
\hat{M}^{2}\left|\mu_{1}\right\rangle=\hat{M}\left(\hat{M}\left|\mu_{1}\right\rangle\right)=\hat{M}\left(m_{1}\left|\mu_{1}\right\rangle\right)=m_{1}\left(\hat{M}\left|\mu_{1}\right\rangle\right) \\
=m_{1}\left(m_{1}\left|\mu_{1}\right\rangle\right)=m_{1}^{2}\left|\mu_{1}\right\rangle
\end{array}
$$

Thus $\left|\mu_{1}\right\rangle$ is also an eigenstate of \hat{M}^{2}, with the eigenvalue m_{1}^{2}.
Similarly, $\left|\mu_{1}\right\rangle$ is also an eigenstate of \hat{M}^{n}, for any positive integer n, with the eigenvalue m_{1}^{n}.
(b) How is the operator $e^{\hat{M}}$ defined?

How is $e^{\alpha \hat{M}}$ defined, if α is a complex number?
Is $\left|\mu_{1}\right\rangle$ an eigenstate of $e^{\alpha \hat{M}}$? If so, find the corresponding eigenvalue.

Solution/Hints/Discussion \rightarrow

$$
\begin{aligned}
e^{\hat{M}} & =\hat{1}+\hat{M}+\frac{1}{2!} \hat{M}^{2}+\frac{1}{3!} \hat{M}^{3}+\cdots \\
e^{\alpha \hat{M}} & =\hat{1}+\alpha \hat{M}+\frac{\alpha}{2!} \hat{M}^{2}+\frac{\alpha^{2}}{3!} \hat{M}^{3}+\cdots
\end{aligned}
$$

Is $\left|\mu_{1}\right\rangle$ is an eigenstate of $e^{\alpha \hat{M}}$? Let's try:

$$
\begin{aligned}
e^{\alpha \hat{M}}\left|\mu_{1}\right\rangle & =\left(\hat{1}+\alpha \hat{M}+\frac{\alpha}{2!} \hat{M}^{2}+\frac{\alpha^{2}}{3!} \hat{M}^{3}+\cdots\right)\left|\mu_{1}\right\rangle \\
& =\left|\mu_{1}\right\rangle+\alpha m_{1}\left|\mu_{1}\right\rangle+\frac{\alpha}{2!} m_{1}^{2}\left|\mu_{1}\right\rangle+\frac{\alpha^{2}}{3!} m_{1}^{3}\left|\mu_{1}\right\rangle+\cdots \\
& =\left(1+\alpha m_{1}+\frac{\alpha}{2!} m_{1}^{2}+\frac{\alpha^{2}}{3!} m_{1}^{3}+\cdots\right)\left|\mu_{1}\right\rangle=e^{\alpha m_{1}}\left|\mu_{1}\right\rangle
\end{aligned}
$$

Yes, an eigenstate, with the eigenvalue $e^{\alpha m_{1}}$.
3. We will consider a particle in one dimension subject to a negative (attractive) delta potential at $x=0$:

$$
V(x)=-\lambda \delta(x)
$$

This system has a single bound state at some negative energy, $E<0$. We will find the energy and wavefunction of this bound state.

Comment \rightarrow

The wikipedia page titled "Delta potential" is recommended reading. Also described there is the motivation for studying this artificial-looking potential.

$$
-=-=-=-={ }^{*}=-=-=-=-
$$

(a) Consider the left half-line $(x<0)$. Write down the general solution of the Schroedinger equation in this region. Remember: we are considering $E<0$.
Argue why one of the terms of the general solution can be dropped.

Solution/Hints/Discussion \rightarrow

Away from $x=0$, the potential is zero, so the Schroedinger equation is

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}=E \psi \\
\Longrightarrow \quad \psi^{\prime \prime}(x)-\alpha^{2} \psi(x)=0 \quad \text { with } \quad \alpha=\sqrt{-\frac{2 m E}{\hbar^{2}}}
\end{gathered}
$$

The general solution is

$$
\psi_{L}(x)=A_{L} e^{\alpha x}+B_{L} e^{-\alpha x}
$$

I'm using the indices L and R for the left half-line and right half-line respectively.
The second term diverges for $x \rightarrow-\infty$, and so is unphysical, and so needs to be dropped:

$$
\psi_{L}(x)=A_{L} e^{\alpha x}
$$

(b) Similarly find the general solution on the right half-line $(x>0)$, and identify the term that should be dropped.

Solution/Hints/Discussion \rightarrow

On the right side, same general solution:

$$
\psi_{R}(x)=A_{R} e^{\alpha x}+B_{R} e^{-\alpha x}
$$

The first term diverges for $x \rightarrow+\infty$, and so is unphysical, and so needs to be dropped:

$$
\begin{gathered}
\psi_{R}(x)=B_{R} e^{-\alpha x} \\
\text {-=-=-=-= } *=-=-=-=-
\end{gathered}
$$

(c) Explain why the derivative of the wavefunction, $\psi^{\prime}(x)$, need not be continuous at $x=0$.

Solution/Hints/Discussion \rightarrow

The derivative needs to be continuous if the potential is everywhere finite. The potential here is $-\infty$ at $x=0$, i.e., not finite everywhere. Hence the derivative $\psi^{\prime}(x)$ does not need to be continuous.
We can also think about this by looking directly at the Schoroedinger equation:

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)- & \lambda \delta(x) \psi(x)=E \psi(x) \\
& \Longrightarrow \quad-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)=\lambda \delta(x) \psi(x)+E \psi(x)
\end{aligned}
$$

Since the right hand side is not finite at $x=0$, this means that $\psi^{\prime \prime}(x)$ is not finite at $x=0$. This is consistent with $\psi^{\prime}(x)$ having a jump (discontinuity) at $x=0$. (If a function has a jump, its derivative is infinite at that point.) Hence it is expected that $\psi^{\prime}(x)$ will have a jump at $x=0$.
(d) Let ϵ be an infinitesimally small positive number. By integrating both sides of the Schroedinger equation from $-\epsilon$ to ϵ, show that the derivative of the wavefunction has the following discontinuity around the $x=0$ point:

$$
\psi^{\prime}(\epsilon)-\psi^{\prime}(-\epsilon)=-\frac{2 m \lambda}{\hbar^{2}} \psi(0)+\text { infinitesimal term }
$$

Solution/Hints/Discussion \rightarrow

The Schroedinger equation is

$$
\begin{aligned}
&-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)- \lambda \delta(x) \psi(x)=E \psi(x) \\
& \Longrightarrow \quad \psi^{\prime \prime}(x)=-\frac{2 m \lambda}{\hbar^{2}} \delta(x) \psi(x)--\frac{2 m E}{\hbar^{2}} \psi(x)
\end{aligned}
$$

Integrating both sides from $x=-\epsilon$ to $x=+\epsilon$, one obtains

$$
\int_{-\epsilon}^{\epsilon} \psi^{\prime \prime}(x) d x=-\frac{2 m \lambda}{\hbar^{2}} \int_{-\epsilon}^{\epsilon} \delta(x) \psi(x) d x-\frac{2 m E}{\hbar^{2}} \int_{-\epsilon}^{\epsilon} \psi(x) d x
$$

The first integral is equal to $\psi^{\prime}(\epsilon)-\psi^{\prime}(-\epsilon)$ because $\frac{d}{d x} \psi^{\prime}(x)=\psi^{\prime \prime}(x)$. (Fundamental Theorem of Calculus.)
The second integral is $\psi(0)$ due to the property of the Dirac delta function.
Since $\psi(x)$ is continuous, the last integral can be approximated for very small ϵ as $\psi(0) 2 \epsilon$, which is an infinitesimal quantity.
Thus

$$
\psi^{\prime}(\epsilon)-\psi^{\prime}(-\epsilon)=-\frac{2 m \lambda}{\hbar^{2}} \psi(0)+\text { infinitesimal term }
$$

(e) Determine the energy of the bound state and the constants in the wavefunction.
You can use continuity of $\psi(x)$ and the normalization of the full wavefunction. In addition, the relation above for the discontinuity of $\psi^{\prime}(x)$ can be used as a boundary condition:

$$
\psi_{R}^{\prime}(0)-\psi_{L}^{\prime}(0)=-\frac{2 m \lambda}{\hbar^{2}} \psi_{L}(0)
$$

where $\psi_{L}(x)$ and $\psi_{R}(x)$ are the wavefunctions on the left half-line and right half-line respectively.

Solution/Hints/Discussion \rightarrow

The wavefunction is $\psi_{L}(x)=A_{L} e^{\alpha x}$ on the left and $\psi_{R}(x)=B_{R} e^{-\alpha x}$ on the right.
Continuity of the wavefunction:

$$
\psi_{L}(0)=\psi_{R}(0) \quad \Longrightarrow \quad A_{L}=B_{R}
$$

Normalization:

$$
\begin{gathered}
\int_{-\infty}^{0}\left|\psi_{L}(x)\right|^{2} d x+\int_{0}^{\infty}\left|\psi_{R}(x)\right|^{2} d x=1 \\
\Longrightarrow \quad\left|A_{L}\right|^{2} \int_{-\infty}^{0} e^{2 \alpha x} d x+\left|A_{L}\right|^{2} \int_{0}^{\infty} e^{-2 \alpha x} d x=1 \\
\Longrightarrow \quad\left|A_{L}\right|^{2} \frac{1}{2 \alpha}+\left|A_{L}\right|^{2} \frac{1}{2 \alpha}=1 \\
\Longrightarrow \quad\left|A_{L}\right|^{2}=\alpha=\sqrt{-\frac{2 m E}{\hbar^{2}}}
\end{gathered}
$$

Discontinuity of ψ^{\prime} :

$$
\begin{gathered}
-\alpha A_{L}-\alpha A_{L}=-\frac{2 m \lambda}{\hbar^{2}} A_{L} \quad\left\{\begin{array}{l}
\text { using } \psi_{L}^{\prime}(0)=A_{L}(\alpha) e^{0}=\alpha A_{L} \\
\text { and } \psi_{R}^{\prime}(0)=B_{R}(-\alpha) e^{0}=--\alpha A_{L}
\end{array}\right. \\
\Longrightarrow \quad \alpha=\frac{m \lambda}{\hbar^{2}} \quad \Longrightarrow \quad E=-\frac{\hbar^{2} \alpha^{2}}{2 m}=-\frac{m \lambda^{2}}{2 \hbar^{2}}
\end{gathered}
$$

Thus we have found the energy and the overall constant to be

$$
E=-\frac{m \lambda^{2}}{2 \hbar^{2}} \quad A_{L}=\sqrt{\alpha}=\sqrt{\frac{m \lambda}{\hbar^{2}}}
$$

$$
-=-=-=-=*=-=-=-=-
$$

(f) Plot the wavefunction as a function of position. Make sure the (dis)continuity at $x=0$ is clearly visible.

Solution/Hints/Discussion \rightarrow

Note that the wavefunction from either side DOES NOT diverge at $x=0$, because both functions $e^{\alpha x}$ and $e^{-\alpha x}$ go to unity at $x=0$. i.e., the wavefunction is very finite.
The wavefunction $\psi(x)$ itself is continuous - there is no jump.
The derivative of the wavefunction is discontinuous - this appears as a 'kink' in the curve at $x=0$.
Exercise: Plot the derivative, $\psi^{\prime}(x)$, as a function of position.

