MP363, PROBLEM SET 08 - PARTIAL SOLUTIONS p-1

Some partial solutions and/or hints are given below. Watch out for

misprints. If you catch an error, please let me know.

1. Unitary matrices and operators.

(a)

Look up and report the definition of a unitary matrix.

Solution/Hints/Discussion —

A matrix is unitary if its hermitian conjugate (adjoint) is its inverse.

U is unitary if UT = U™, ie., if UTU = UUT = I.

Comment (1): The Hermitian conjugate is also known as the adjoint,
or the conjugate transpose.

Comment (2): Sometimes, the conjugate transpose is also denoted
with a star instead of with a dagger symbol, i.e., U* instead of UT.
(E.g., as of Nov. 2020 the star notation is used in the wikipedia page
for ‘Unitary Matrix’.) I strongly recommend using the dagger symbol,
because in physics the star often represents the complex conjugate
without transpose.

Show that the matrix ((1) 0

) is its own inverse.

Solution/Hints/Discussion —

A matrix A is its own inverse if AA = I. The matrix o, is its own
inverse, because

o= () 0) - ()

I
*
I
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(c) Show that the three Pauli matrices are unitary.

Solution/Hints/Discussion —

We want to show
00l = alax =7 ayaT = O'T(Ty =7 0,00 = alaz =1

T Y Y z

First for o,:

(01 + (0 1Y) N O'J;O'l =00, =1
using the fact that o2 = I, as shown previously.

Now for oy:

oy = (0 _OZ) ol = (O _OZ) =0, — OZ”T’JZ/ = ooy =1
2 ? Oy0y = Oy0y = I
where we have used the fact that

o= (0 9) () = (0 =

And finally for o.:

0 —2 t 0 —2 Jzal =00, =1
O, = . g, = . =0, e
i 0 z i 0 olo, =00, =1

where we have used the fact that

G669 -
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(d)

B
oy (g), i.e., operating with o, keeps the norm unchanged.

Show that the two-dimensional vector (a) has the same norm as

Solution/Hints/Discussion —

ay (0 =\ [fa\  [—if
o (3) = (0 9) () - (&)
whose norm is

| =B +|ia)* = B+ o> = |a]* +|B)?

This is the same as the norm of (g

). Hence the norm is unchanged

by operating with o,.

If U is a unitary operator, show that the state |¢/) = U |¢) has the
same norm as the state |¢).

Solution/Hints/Discussion —

wy=Ulg) = (¢l =(g|U
Thus the norm of |¢) is

(W) = (e|UU ) = (¢]0)

i.e., is equal to the norm of |¢). Note we have used UtU = 1.

Comment:

Note that this is abstract and general, and makes no assumption about
whether the Hilbert space is finite-dimensional or infinite-dimensional.
We don’t need a specific formula for the norm such as [ dzy*(z)y(x)
or 3 151, The general bra-ket expression (¢[1) is good enough.
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2. The state |u1) is an eigenstate of M with corresponding eigenvalue m;.

(a)

Show that |y ) is also an eigenstate of M?2, and find the corresponding
eigenvalue. Show that |u) is also an eigenstate of M", where n is an
integer, and find the corresponding eigenvalue.

Solution/Hints/Discussion —
Since M |p1) = myq |p1), we have

M) = N (W) = N Gmalm)) = m (0 )
= ma(mlm)) = milu)

Thus |u1) is also an eigenstate of M?, with the eigenvalue m2.

Similarly, |u1) is also an eigenstate of M™, for any positive integer n,
with the eigenvalue m7.

How is the operator e 1 defined?
How is e®M defined, if « is a complex number?
allo

Is |p1) an eigenstate of e*? If so, find the corresponding eigenvalue.

Solution/Hints/Discussion —
M Lo 1os
e :1+M+2'M+3M+

oM — 1+aM—|—2'M2+ 5 M3

Is |p1) is an eigenstate of e*M? Tet’s try:

GQM’/L1> = <1+QM+ 'M2+ M3 )|[L1>

2! 3!
2
« (0% .
\u1>+am1\u1>+5m?\u1>+§m‘f\u1>+-~
a a?
- (“‘W”l*am“ it )lu1> = "™ )

Yes, an eigenstate, with the eigenvalue e*™!.
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3. We will consider a particle in one dimension subject to a negative
(attractive) delta potential at x = 0:

Viz) = —M(x)

This system has a single bound state at some negative energy, £ < 0. We
will find the energy and wavefunction of this bound state.

Comment —

The wikipedia page titled “Delta potential” is recommended reading.
Also described there is the motivation for studying this artificial-looking
potential.

(a) Consider the left half-line (x < 0). Write down the general solution
of the Schroedinger equation in this region. Remember: we are
considering £ < 0.

Argue why one of the terms of the general solution can be dropped.

Solution/Hints/Discussion —

Away from x = 0, the potential is zero, so the Schroedinger equation
is

n2 9%y
“omonz Y
—  '(z)—a®(z) = 0 with a= _27;;]5

The general solution is
¢L(l’) = ALBOM —{—BL@_QI

I'm using the indices L. and R for the left half-line and right half-line
respectively.

The second term diverges for x — —o0, and so is unphysical, and so
needs to be dropped:

Q/JL(JT) = ALGM
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(b)

Similarly find the general solution on the right half-line (z > 0), and
identify the term that should be dropped.

Solution/Hints/Discussion —
On the right side, same general solution:

Q/JR(l') = ARGOM +BR€7QZE

The first term diverges for x — 400, and so is unphysical, and so
needs to be dropped:
wR(l’) = BReiax

Explain why the derivative of the wavefunction, ¢'(z), need not be
continuous at x = 0.

Solution/Hints/Discussion —

The derivative needs to be continuous if the potential is everywhere
finite. The potential here is —oo at x = 0, i.e., not finite everywhere.
Hence the derivative ¢'(z) does not need to be continuous.
We can also think about this by looking directly at the Schoroedinger
equation:

h2

— () = AS(@)(z) = By()
m
h2

= 5 (@) = M(@)(@) + B()

Since the right hand side is not finite at « = 0, this means that " (z)
is not finite at © = 0. This is consistent with ¢’(z) having a jump
(discontinuity) at x = 0. (If a function has a jump, its derivative is
infinite at that point.) Hence it is expected that ¢'(z) will have a
jump at x = 0.
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(d) Let € be an infinitesimally small positive number. By integrating
both sides of the Schroedinger equation from —e to €, show that the
derivative of the wavefunction has the following discontinuity around
the x = 0 point:

2mA

V(O -v(- = -

¥(0) + infinitesimal term

Solution/Hints/Discussion —

The Schroedinger equation is

hQ

= 5 (@) = A(@)p(z) = E()
" 2mA 2mE
= Y) = - ) - — ()
Integrating both sides from x = —e to x = +¢, one obtains

‘ 2mA [€ 2mE [€
e = -5 [ s - 2 [ vla)ds
The first integral is equal to ¢'(€) — ¢'(—€) because L1/ (z) = ¢ (z).

(Fundamental Theorem of Calculus.)

The second integral is ¢(0) due to the property of the Dirac delta
function.

Since 1 (z) is continuous, the last integral can be approximated for
very small € as 1(0)2¢, which is an infinitesimal quantity.

Thus

2mA
72

Y'(e) =Y (=) = — ¥(0) + infinitesimal term
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(e) Determine the energy of the bound state and the constants in the
wavefunction.

You can use continuity of ¢ (z) and the normalization of the full
wavefunction. In addition, the relation above for the discontinuity
of ¢/(z) can be used as a boundary condition:

2mA

UR(0) = v (0) = — ZE20(0)

where ¢ (z) and ¥ (z) are the wavefunctions on the left half-line and
right half-line respectively.

Solution/Hints/Discussion —

The wavefunction is ¥ (x) = Ape®® on the left and Yg(x) = Bre™**
on the right.

Continuity of the wavefunction:

Y1 (0) = ¥gr(0) = Ap=Bp

Normalization:

[ Wb+ [T lontoPar =1

0

0 0o
— |AL’2/ €2axdl’ + |AL’2/ 672axd$ =1
—00 0

1 1
= AP A =
2mE

h2

— ’AL‘2 = o =

Discontinuity of v’

ol —ad, = — 2y using ¢4 (0) = Ap(a)e® = a A,
h2 and 1/,(0) = Br(—a)e® = — — a Ay
— = m_>\ — E__hgag_ mA2
oo - 2m 2R?

Thus we have found the energy and the overall constant to be

mA? mA\

B=—t A= Ve =5
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(f) Plot the wavefunction as a function of position. Make sure the
(dis)continuity at = 0 is clearly visible.

Solution/Hints/Discussion —

W(x)

X

Note that the wavefunction from either side DOES NOT diverge at
x = 0, because both functions e** and e~** go to unity at z = 0. i.e.,
the wavefunction is very finite.

The wavefunction ¢ (x) itself is continuous — there is no jump.

The derivative of the wavefunction is discontinuous — this appears as
a ‘kink’ in the curve at x = 0.

Exercise: Plot the derivative, ¢/(x), as a function of position.



