
MP363, Problem set 08 - partial solutions p.1

Some partial solutions and/or hints are given below. Watch out for
misprints. If you catch an error, please let me know.

−−−−−−−−−−−−− ?−−−−−−−−−−−−

1. Unitary matrices and operators.

(a) Look up and report the definition of a unitary matrix.

Solution/Hints/Discussion →
A matrix is unitary if its hermitian conjugate (adjoint) is its inverse.

U is unitary if U † = U−1, i.e., if U †U = UU † = I.

Comment (1): The Hermitian conjugate is also known as the adjoint,
or the conjugate transpose.

Comment (2): Sometimes, the conjugate transpose is also denoted
with a star instead of with a dagger symbol, i.e., U∗ instead of U †.
(E.g., as of Nov. 2020 the star notation is used in the wikipedia page
for ‘Unitary Matrix’.) I strongly recommend using the dagger symbol,
because in physics the star often represents the complex conjugate
without transpose.

-=-=-=-= * =-=-=-=-

(b) Show that the matrix

(
0 1
1 0

)
is its own inverse.

Solution/Hints/Discussion →
A matrix A is its own inverse if AA = I. The matrix σx is its own
inverse, because

σxσx =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)

-=-=-=-= * =-=-=-=-
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(c) Show that the three Pauli matrices are unitary.

Solution/Hints/Discussion →
We want to show

σxσ
†
x = σ†xσx = I σyσ

†
y = σ†yσy = I σzσ

†
z = σ†zσz = I

First for σx:

σx =

(
0 1
1 0

)
σ†x =

(
0 1
1 0

)
= σx =⇒

{
σxσ

†
x = σxσx = I

σ†xσx = σxσx = I

using the fact that σ2
x = I, as shown previously.

Now for σy:

σy =

(
0 −i
i 0

)
σ†y =

(
0 −i
i 0

)
= σy =⇒

{
σyσ

†
y = σyσy = I

σ†yσy = σyσy = I

where we have used the fact that

σyσy =

(
0 −i
i 0

)(
0 −i
i 0

)
=

(
1 0
0 1

)
= I

And finally for σz:

σz =

(
0 −i
i 0

)
σ†z =

(
0 −i
i 0

)
= σz =⇒

{
σzσ

†
z = σzσz = I

σ†zσz = σzσz = I

where we have used the fact that

σzσz =

(
1 0
0 −1

)(
1 0
0 −1

)
=

(
1 0
0 1

)
= I

-=-=-=-= * =-=-=-=-
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(d) Show that the two-dimensional vector

(
α
β

)
has the same norm as

σy

(
α
β

)
, i.e., operating with σy keeps the norm unchanged.

Solution/Hints/Discussion →

σy

(
α
β

)
=

(
0 −i
i 0

)(
α
β

)
=

(
−iβ
iα

)
whose norm is

| − iβ|2 + |iα|2 = |β|2 + |α|2 = |α|2 + |β|2

This is the same as the norm of

(
α
β

)
. Hence the norm is unchanged

by operating with σy.

-=-=-=-= * =-=-=-=-

(e) If Û is a unitary operator, show that the state |ψ 〉 = Û |φ〉 has the
same norm as the state |φ〉.

Solution/Hints/Discussion →

|ψ 〉 = Û |φ〉 =⇒ 〈ψ| = 〈φ| Û †

Thus the norm of |ψ 〉 is

〈ψ|ψ〉 = 〈φ| Û †Û |φ〉 = 〈φ|φ〉

i.e., is equal to the norm of |φ〉. Note we have used Û †Û = 1.

Comment:

Note that this is abstract and general, and makes no assumption about
whether the Hilbert space is finite-dimensional or infinite-dimensional.

We don’t need a specific formula for the norm such as
∫
dxψ∗(x)ψ(x)

or
∑

j ψ
∗
jψj. The general bra-ket expression 〈ψ|ψ〉 is good enough.

-=-=-=-= * =-=-=-=-
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2. The state |µ1 〉 is an eigenstate of M̂ with corresponding eigenvalue m1.

(a) Show that |µ1 〉 is also an eigenstate of M̂2, and find the corresponding
eigenvalue. Show that |µ1 〉 is also an eigenstate of M̂n, where n is an
integer, and find the corresponding eigenvalue.

Solution/Hints/Discussion →
Since M̂ |µ1 〉 = m1 |µ1 〉, we have

M̂2 |µ1 〉 = M̂
(
M̂ |µ1 〉

)
= M̂ (m1 |µ1 〉) = m1

(
M̂ |µ1 〉

)
= m1 (m1 |µ1 〉) = m2

1 |µ1 〉

Thus |µ1 〉 is also an eigenstate of M̂2, with the eigenvalue m2
1.

Similarly, |µ1 〉 is also an eigenstate of M̂n, for any positive integer n,
with the eigenvalue mn

1 .

-=-=-=-= * =-=-=-=-

(b) How is the operator eM̂ defined?

How is eαM̂ defined, if α is a complex number?

Is |µ1 〉 an eigenstate of eαM̂? If so, find the corresponding eigenvalue.

Solution/Hints/Discussion →

eM̂ = 1̂ + M̂ +
1

2!
M̂2 +

1

3!
M̂3 + · · ·

eαM̂ = 1̂ + αM̂ +
α

2!
M̂2 +

α2

3!
M̂3 + · · ·

Is |µ1 〉 is an eigenstate of eαM̂? Let’s try:

eαM̂ |µ1 〉 =

(
1̂ + αM̂ +

α

2!
M̂2 +

α2

3!
M̂3 + · · ·

)
|µ1 〉

= |µ1 〉+ αm1 |µ1 〉+
α

2!
m2

1 |µ1 〉+
α2

3!
m3

1 |µ1 〉+ · · ·

=

(
1 + αm1 +

α

2!
m2

1 +
α2

3!
m3

1 + · · ·
)
|µ1 〉 = eαm1 |µ1 〉

Yes, an eigenstate, with the eigenvalue eαm1 .
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3. We will consider a particle in one dimension subject to a negative
(attractive) delta potential at x = 0:

V (x) = − λδ(x)

This system has a single bound state at some negative energy, E < 0. We
will find the energy and wavefunction of this bound state.

Comment →
The wikipedia page titled “Delta potential” is recommended reading.
Also described there is the motivation for studying this artificial-looking
potential.

-=-=-=-= * =-=-=-=-

(a) Consider the left half-line (x < 0). Write down the general solution
of the Schroedinger equation in this region. Remember: we are
considering E < 0.

Argue why one of the terms of the general solution can be dropped.

Solution/Hints/Discussion →
Away from x = 0, the potential is zero, so the Schroedinger equation
is

− ~2

2m

∂2ψ

∂x2
= Eψ

=⇒ ψ′′(x)− α2ψ(x) = 0 with α =

√
−2mE

~2

The general solution is

ψL(x) = ALe
αx +BLe

−αx

I’m using the indices L and R for the left half-line and right half-line
respectively.

The second term diverges for x → −∞, and so is unphysical, and so
needs to be dropped:

ψL(x) = ALe
αx
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-=-=-=-= * =-=-=-=-

(b) Similarly find the general solution on the right half-line (x > 0), and
identify the term that should be dropped.

Solution/Hints/Discussion →
On the right side, same general solution:

ψR(x) = ARe
αx +BRe

−αx

The first term diverges for x → +∞, and so is unphysical, and so
needs to be dropped:

ψR(x) = BRe
−αx

-=-=-=-= * =-=-=-=-

(c) Explain why the derivative of the wavefunction, ψ′(x), need not be
continuous at x = 0.

Solution/Hints/Discussion →
The derivative needs to be continuous if the potential is everywhere
finite. The potential here is −∞ at x = 0, i.e., not finite everywhere.
Hence the derivative ψ′(x) does not need to be continuous.

We can also think about this by looking directly at the Schoroedinger
equation:

− ~2

2m
ψ′′(x) − λδ(x)ψ(x) = Eψ(x)

=⇒ − ~2

2m
ψ′′(x) = λδ(x)ψ(x) + Eψ(x)

Since the right hand side is not finite at x = 0, this means that ψ′′(x)
is not finite at x = 0. This is consistent with ψ′(x) having a jump
(discontinuity) at x = 0. (If a function has a jump, its derivative is
infinite at that point.) Hence it is expected that ψ′(x) will have a
jump at x = 0.

-=-=-=-= * =-=-=-=-
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(d) Let ε be an infinitesimally small positive number. By integrating
both sides of the Schroedinger equation from −ε to ε, show that the
derivative of the wavefunction has the following discontinuity around
the x = 0 point:

ψ′(ε)− ψ′(−ε) = − 2mλ

~2
ψ(0) + infinitesimal term

Solution/Hints/Discussion →
The Schroedinger equation is

− ~2

2m
ψ′′(x) − λδ(x)ψ(x) = Eψ(x)

=⇒ ψ′′(x) = − 2mλ

~2
δ(x)ψ(x)−−2mE

~2
ψ(x)

Integrating both sides from x = −ε to x = +ε, one obtains∫ ε

−ε
ψ′′(x)dx = − 2mλ

~2

∫ ε

−ε
δ(x)ψ(x)dx− 2mE

~2

∫ ε

−ε
ψ(x)dx

The first integral is equal to ψ′(ε)− ψ′(−ε) because d
dx
ψ′(x) = ψ′′(x).

(Fundamental Theorem of Calculus.)

The second integral is ψ(0) due to the property of the Dirac delta
function.

Since ψ(x) is continuous, the last integral can be approximated for
very small ε as ψ(0)2ε, which is an infinitesimal quantity.

Thus

ψ′(ε)− ψ′(−ε) = − 2mλ

~2
ψ(0) + infinitesimal term

-=-=-=-= * =-=-=-=-
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(e) Determine the energy of the bound state and the constants in the
wavefunction.

You can use continuity of ψ(x) and the normalization of the full
wavefunction. In addition, the relation above for the discontinuity
of ψ′(x) can be used as a boundary condition:

ψ′R(0)− ψ′L(0) = − 2mλ

~2
ψL(0)

where ψL(x) and ψR(x) are the wavefunctions on the left half-line and
right half-line respectively.

Solution/Hints/Discussion →
The wavefunction is ψL(x) = ALe

αx on the left and ψR(x) = BRe
−αx

on the right.

Continuity of the wavefunction:

ψL(0) = ψR(0) =⇒ AL = BR

Normalization:∫ 0

−∞
|ψL(x)|2 dx +

∫ ∞
0

|ψR(x)|2 dx = 1

=⇒ |AL|2
∫ 0

−∞
e2αxdx + |AL|2

∫ ∞
0

e−2αxdx = 1

=⇒ |AL|2
1

2α
+ |AL|2

1

2α
= 1

=⇒ |AL|2 = α =

√
−2mE

~2

Discontinuity of ψ′:

−αAL − αAL = − 2mλ

~2
AL

{
using ψ′L(0) = AL(α)e0 = αAL

and ψ′R(0) = BR(−α)e0 = −− αAL

=⇒ α =
mλ

~2
=⇒ E = −~2α2

2m
= −mλ

2

2~2

Thus we have found the energy and the overall constant to be

E = −mλ
2

2~2
AL =

√
α =

√
mλ

~2
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-=-=-=-= * =-=-=-=-

(f) Plot the wavefunction as a function of position. Make sure the
(dis)continuity at x = 0 is clearly visible.

Solution/Hints/Discussion →

ψ(x)

x

Note that the wavefunction from either side DOES NOT diverge at
x = 0, because both functions eαx and e−αx go to unity at x = 0. i.e.,
the wavefunction is very finite.

The wavefunction ψ(x) itself is continuous – there is no jump.

The derivative of the wavefunction is discontinuous – this appears as
a ‘kink’ in the curve at x = 0.

Exercise: Plot the derivative, ψ′(x), as a function of position.


