Due Friday, November 27th

- 1. Unitary matrices and operators.
 - (a) [2 pts.] Look up and report the definition of a unitary matrix.
 - (b) [1 pt.] Show that the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is its own inverse. Hint: no need to calculate an inverse explicitly; use the fact/definition that a matrix multiplied by its inverse gives the identity.
 - (c) [5 pts.] Show that the three Pauli matrices are unitary.(Comment: We have seen previously that they are also hermitian. These matrices are both hermitian and unitary!)
 - (d) [3 pts.] Show that the two-dimensional vector $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ has the same norm as $\sigma_y \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$, i.e., operating with σ_y keeps the norm unchanged. (Note: This is a special case of the fact that a unitary operation keeps the norm unchanged.)
 - (e) [4 pts.] If \hat{U} is a unitary operator, show that the state $|\psi\rangle = \hat{U} |\phi\rangle$ has the same norm as the state $|\phi\rangle$.
- 2. The state $|\mu_1\rangle$ is an eigenstate of \hat{M} with corresponding eigenvalue m_1 .
 - (a) [2 pts.] Show that $|\mu_1\rangle$ is also an eigenstate of \hat{M}^2 , and find the corresponding eigenvalue. Show that $|\mu_1\rangle$ is also an eigenstate of \hat{M}^n , where *n* is an integer, and find the corresponding eigenvalue.
 - (b) [5 pts.] How is the operator e^{M̂} defined?
 How is e^{αM̂} defined, if α is a complex number?
 Is |μ₁⟩ is an eigenstate of e^{αM̂}? If so, find the corresponding eigenvalue.

3. Review the properties of the Dirac delta function.

We will consider a particle in one dimension subject to a negative (attractive) delta potential at x = 0:

$$V(x) = -\lambda\delta(x)$$

This system has a single bound state at some negative energy, E < 0. We will find the energy and wavefunction of this bound state.

(a) [5 pts.] Consider the left half-line (x < 0). Write down the general solution of the Schroedinger equation in this region. Remember: we are considering E < 0.

Argue why one of the terms of the general solution can be dropped.

- (b) [2 pts.] Similarly find the general solution on the right half-line (x > 0), and identify the term that should be dropped.
- (c) [3 pts.] Explain why the derivative of the wavefunction, $\psi'(x)$, need not be continuous at x = 0.
- (d) [6 pts.] Let ϵ be an infinitesimally small positive number. By integrating both sides of the Schroedinger equation from $-\epsilon$ to ϵ , show that the derivative of the wavefunction has the following discontinuity around the x = 0 point:

$$\psi'(\epsilon) - \psi'(-\epsilon) = -\frac{2m\lambda}{\hbar^2}\psi(0) + \text{ infinitesimal term}$$

(e) [8 pts.] Determine the energy of the bound state and the constants in the wavefunction.

You can use continuity of $\psi(x)$ and the normalization of the full wavefunction. In addition, the relation above for the discontinuity of $\psi'(x)$ can be used as a boundary condition:

$$\psi_R'(0) - \psi_L'(0) = -\frac{2m\lambda}{\hbar^2}\psi_L(0)$$

where $\psi_L(x)$ and $\psi_R(x)$ are the wavefunctions on the left half-line and right half-line respectively.

(f) [4 pts.] Plot the wavefunction as a function of position. Make sure the (dis)continuity at x = 0 is clearly visible.