Due Friday, November 27th

1. Unitary matrices and operators.
(a) [2 pts.] Look up and report the definition of a unitary matrix.
(b) $[\mathbf{1} \mathbf{p t}$.$] Show that the matrix \left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ is its own inverse.

Hint: no need to calculate an inverse explicitly; use the fact/definition that a matrix multiplied by its inverse gives the identity.
(c) [5 pts.] Show that the three Pauli matrices are unitary.
(Comment: We have seen previously that they are also hermitian. These matrices are both hermitian and unitary!)
(d) $\left[\mathbf{3}\right.$ pts.] Show that the two-dimensional vector $\binom{\alpha}{\beta}$ has the same norm as $\sigma_{y}\binom{\alpha}{\beta}$, i.e., operating with σ_{y} keeps the norm unchanged. (Note: This is a special case of the fact that a unitary operation keeps the norm unchanged.)
(e) [4 pts.] If \hat{U} is a unitary operator, show that the state $|\psi\rangle=\hat{U}|\phi\rangle$ has the same norm as the state $|\phi\rangle$.
2. The state $\left|\mu_{1}\right\rangle$ is an eigenstate of \hat{M} with corresponding eigenvalue m_{1}.
(a) [2 pts.] Show that $\left|\mu_{1}\right\rangle$ is also an eigenstate of \hat{M}^{2}, and find the corresponding eigenvalue. Show that $\left|\mu_{1}\right\rangle$ is also an eigenstate of \hat{M}^{n}, where n is an integer, and find the corresponding eigenvalue.
(b) [5 pts.] How is the operator $e^{\hat{M}}$ defined?

How is $e^{\alpha \hat{M}}$ defined, if α is a complex number?
Is $\left|\mu_{1}\right\rangle$ is an eigenstate of $e^{\alpha \hat{M}}$? If so, find the corresponding eigenvalue.
3. Review the properties of the Dirac delta function.

We will consider a particle in one dimension subject to a negative (attractive) delta potential at $x=0$:

$$
V(x)=-\lambda \delta(x)
$$

This system has a single bound state at some negative energy, $E<0$. We will find the energy and wavefunction of this bound state.
(a) [$5 \mathbf{p t s}$.$] Consider the left half-line (x<0)$. Write down the general solution of the Schroedinger equation in this region. Remember: we are considering $E<0$.
Argue why one of the terms of the general solution can be dropped.
(b) [2 pts.] Similarly find the general solution on the right half-line $(x>$ 0), and identify the term that should be dropped.
(c) [3 pts.] Explain why the derivative of the wavefunction, $\psi^{\prime}(x)$, need not be continuous at $x=0$.
(d) [6 pts.] Let ϵ be an infinitesimally small positive number. By integrating both sides of the Schroedinger equation from $-\epsilon$ to ϵ, show that the derivative of the wavefunction has the following discontinuity around the $x=0$ point:

$$
\psi^{\prime}(\epsilon)-\psi^{\prime}(-\epsilon)=-\frac{2 m \lambda}{\hbar^{2}} \psi(0)+\text { infinitesimal term }
$$

(e) [8 pts.] Determine the energy of the bound state and the constants in the wavefunction.
You can use continuity of $\psi(x)$ and the normalization of the full wavefunction. In addition, the relation above for the discontinuity of $\psi^{\prime}(x)$ can be used as a boundary condition:

$$
\psi_{R}^{\prime}(0)-\psi_{L}^{\prime}(0)=-\frac{2 m \lambda}{\hbar^{2}} \psi_{L}(0)
$$

where $\psi_{L}(x)$ and $\psi_{R}(x)$ are the wavefunctions on the left half-line and right half-line respectively.
(f) [4 pts.] Plot the wavefunction as a function of position. Make sure the (dis)continuity at $x=0$ is clearly visible.

