Due on Friday, December 4th.

1. Potential scattering.

Consider a particle of mass m on a one-dimensional line. The potential is zero to the left of $x=-a$ and has a constant positive value to the right of $x=a$. The potential has unknown features within the region $x \in[-a, a]$.

$$
V(x)= \begin{cases}0 & \text { for } x<-a \\ \text { unknown } & \text { for }-a<x<a \\ V_{0} & \text { for } x>a\end{cases}
$$

The Schroedinger equation for this system is found/known to have a solution with energy E with the following forms in the regions outside $[-a, a]$:

$$
\begin{array}{ll}
\psi(x)=\alpha e^{i k_{1} x}+\beta e^{-i k_{1} x} & \text { for } x<-a \\
\psi(x)=\gamma e^{i k_{2} x} & \text { for } x>a
\end{array}
$$

where k_{1} and k_{2} are positive real constants, and

$$
\alpha=\frac{k_{1}+i k_{2}}{k_{1}-i k_{2}} \quad ; \quad \beta=\frac{i k_{1}}{k_{1}-i k_{2}} \quad ; \quad \gamma=\frac{\sqrt{k_{1} k_{2}}}{k_{1}-i k_{2}}
$$

(a) [4 pts.] Express k_{1} in terms of E.
(b) [2 pts.] Is E larger or smaller than V_{0} ? Explain why.
(c) [5 pts.] Express k_{2} in terms of E and V_{0}.
(d) [3 pts.] If we want to interpret this as a scattering problem, which parts of the wavefunction would you interpret as incident wave, reflected wave, and transmitted wave?
(e) [4 pts.] Calculate the reflection coefficient.
(f) [5 pts.] Calculate the transmission coefficient. (Careful: remember momentum factors.)
(g) [2 pts.] Check that the sum of the two coefficients makes sense.
2. Suppose $\psi_{0}(x)$ is a normalized wavefunction with

$$
\langle\hat{x}\rangle_{\psi_{0}}=\left\langle\psi_{0}\right| \hat{x}\left|\psi_{0}\right\rangle=x_{0} \quad\langle\hat{p}\rangle_{\psi_{0}}=\left\langle\psi_{0}\right| \hat{p}\left|\psi_{0}\right\rangle=p_{0}
$$

where x_{0} and p_{0} are constants. The subscript indicates the state in which the expectation values are being calculated. Define a new wavefunction

$$
\psi_{\text {new }}(x)=e^{i q x / \hbar} \psi_{0}(x)
$$

where q is a real quantity having dimensions of momentum.
(a) [6 pts.] What is the expectation value $\langle\hat{x}\rangle_{\psi_{\text {new }}}$ in the state $\psi_{\text {new }}(x)$?
(b) [7 pts.] What is the expectation value $\langle\hat{p}\rangle_{\psi_{\text {new }}}$ in the state $\psi_{\text {new }}(x)$?
(c) [SELF] Based on your results, interpret in one sentence the physical significance of multiplying a wavefunction by the factor $e^{i q x / \hbar}$.
3. Consider a particle of mass m on a one-dimensional line. The state of the particle is described by wavefunction $\psi(x)$.
(a) [0 pts.] Look up and write down correctly the definition of the probability current density.
(b) [4 pts.] We write the wavefunction in amplitude-phase form:

$$
\psi(x)=A(x) e^{i \theta(x)}
$$

where both $A(x)$ and $\theta(x)$ are real functions.
Show that the probability current density is given by

$$
j(x)=[A(x)]^{2} \frac{\hbar}{m} \partial_{x} \theta(x)
$$

i.e., the probability current is proportional to the gradient of the phase.
(c) [2 pts.] Show that there is no current in a region where the wavfunction is real.
4. Consider the time-dependent Schroedinger equation (TDSE) for a single particle on a one-dimensional line:

$$
i \hbar \frac{\partial}{\partial t} \psi(x, t)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x, t)+V(x) \psi(x, t)
$$

The potential $V(x)$ is real-valued, i.e., $V^{*}(x)=V(x)$.
(a) [6 pts.] Using the TDSE, show that the probability density $\rho(x, t)=\psi^{*} \psi$ and the probability current density $j(x, t)$ satisfy the one-dimensional continuity equation

$$
\frac{\partial j}{\partial x}=-\frac{\partial \rho}{\partial t}
$$

(b) [SELF] Guess the form of the continuity equation for the probability density, for the case of a particle in three spatial dimensions.
(c) [SELF] What does the continuity equation imply physically?

The wikipedia page on "Continuity Equation" has a section called "quantum mechanics". You might try reading through.

