Due on Friday, December 11th

1. Consider a single particle on a one-dimensional line.
(a) [1 pt.] If the position operator \hat{x} is applied to a wavefunction $\phi(x)$, what is the result?
(b) [2 pts.] If the momentum operator \hat{p} is applied to a wavefunction $\phi(x)$, what is the result?
(c) [5 pts.] Apply the commutator $[\hat{x}, \hat{p}]$ on an arbitrary wavefunction (arbitrary function of x). Hence evaluate the operator $[\hat{x}, \hat{p}]$.
(d) [5 pts.] Define the operator $\hat{M} \equiv \frac{d^{2}}{d x^{2}} \equiv \partial_{x}^{2}$. (As usual I am sloppy about distinguishing full and partial derivatives.) By applying on an arbitrary function of x, evaluate the commutator $[\hat{x}, \hat{M}]$.
2. The Hamiltonian of a system has energy eigenvalues ϵ_{j} and the corresponding orthornormal eigenstates are $\left|\phi_{j}\right\rangle$. The system is prepared in the initial state

$$
|\psi(0)\rangle=\frac{1}{2}\left|\phi_{2}\right\rangle+\frac{\sqrt{3}}{2}\left|\phi_{5}\right\rangle
$$

Here $|\psi(t)\rangle$ represents the wavefunction at time t.
Note: The system is defined completely generally. Do not assume a particular dimension of the Hilbert space. The system could be any quantum system - one particle in three dimensions, a spin- $1 / 2$ object, a collection of fifty spin- $1 / 2$ objects, twenty particles in two dimensions,.... etc. It should not be necessary or even useful to assume a particular type of system. E.g., do not assume inner products to involve integrals over a single spatial coordinate or that states/kets are vectors of dimension 3 .
(a) [$\mathbf{2} \mathbf{~ p t s .]}$ If the energy of the system is measured, what are the possible results? With what probabilities will these values be found?
(b) [2 pts.] Assume in the following that no measurement is performed at $t=0$. Instead, the system is allowed to evolve starting from the state $|\psi(0)\rangle$ given above.
What is the state of the system, $|\psi(t)\rangle$, at a later time t ?
(c) [7 pts.] The operator \hat{B} has zero expectation value in each of the eigenstates, i.e., $\left\langle\phi_{j}\right| \hat{B}\left|\phi_{j}\right\rangle=0$ for all j. In addition, the so-called off-diagonal matrix elements are all equal and real:

$$
\left\langle\phi_{i}\right| \hat{B}\left|\phi_{j}\right\rangle=\beta \quad \text { whenever } \quad i \neq j .
$$

Calculate $\langle\hat{B}\rangle$ as a function of time in the state $|\psi(t)\rangle$, i.e., calculate

$$
\langle\hat{B}(t)\rangle=\langle\psi(t)| \hat{B}|\psi(t)\rangle
$$

Describe in a sentence the time-dependence of the expectation value of the observable B. If there is a frequency involved, what is it?
(d) [SELF] Why are $\left\langle\phi_{i}\right| \hat{B}\left|\phi_{j}\right\rangle$ called the off-diagonal matrix elelments whenever $i \neq j$?
(e) [4 pts.] A measurement of energy is performed at time $t=t_{0}$ and yields the value ϵ_{5}. What is the state of the system immediately after this measurement? What is the state of the system at a later time $t>t_{0}$
(f) [3 pts.] What will be the behaviour of $\langle\hat{B}\rangle$ after the measurement, at times $t>t_{0}$? Justify/explain your answer.
(g) [3 pts.] Sketch a possible plot of $\langle\hat{B}\rangle$ versus time, running from $t=0$ to $t=2 t_{0}$.
3. [$\mathbf{5}$ pts.] Show that the eigenvalues of a unitary operator have unit modulus, i.e., that any eigenvalue of a unitary operator is a pure phase $e^{i \lambda}$, where λ is a real number.
4. Recall for a spin- $1 / 2$ system:

$$
S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad S_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad S_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

We will consider the time-dependent wavefunction

$$
|\psi(t)\rangle=\binom{\alpha e^{-i \beta t}}{\sqrt{3} \alpha}
$$

where α and β are positive real constants.
(a) [2 pts.] Calculate α so that $|\psi(t)\rangle$ is normalized.
(b) [4 pts.] Calculate $\left\langle\hat{S}_{z}\right\rangle$ as a function of time in the state $|\psi(t)\rangle$, i.e., calculate

$$
\left\langle\hat{S}_{z}(t)\right\rangle=\langle\psi(t)| \hat{S}_{z}|\psi(t)\rangle .
$$

Plot the expectation value of S_{z} (in the state $|\psi(t)\rangle$) as a function of time.
(c) [5 pts.] Calculate $\left\langle\hat{S_{x}}\right\rangle$ as a function of time in the state $|\psi(t)\rangle$, i.e., calculate $\left\langle\hat{S}_{x}(t)\right\rangle=\langle\psi(t)| \hat{S}_{x}|\psi(t)\rangle$. Plot the expectation value of S_{x}, in the state $|\psi(t)\rangle$, as a function of time.

