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Below are solutions/hints on some of the questions. There is no guarantee of
completeness or correctness; please watch out for typos.

−−−−−−−−−−−−− ?−−−−−−−−−−−−

1. Show that an operator, when expressed as a matrix in the basis of its own
eigenstates, is diagonal.

Hint: Let’s make this more specific: let {|wn 〉} be the orthonormalized
eigenstates of the operator Ŷ . Use the set {|wn 〉} as basis set and express
Ŷ as a matrix in this representation. Show that this matrix is diagonal.

Hints / Solution / Discussion →
Let the corresponding eigenvalues be {yn}, i.e., Ŷ |wn 〉 = yn |wn 〉 for every
n.

If the set {|wn 〉} is used as basis set, then an operator Â in this basis will
be represented by a matrix whose matrix elements are

Amn = 〈wm| Â |wn 〉

(This is important, please make sure you know this, and go back to the
first three questions of problem set 6 to see this in action.)

Thus, if Ŷ itself is expressed in this basis, then it is represented as a matrix
whose elements are

Ymn = 〈wm| Ŷ |wn 〉 = 〈wm| yn |wn 〉 = yn〈wm
∣∣wn〉 = ynδmn

i.e., Ymn is only nonzero when m = n. In other words, only the diagonal
matrix elements are nonzero, or, the matrix representing Ŷ in this basis is
diagonal.

Concisely, a physicist would say: an operator is diagonal in its own
eigenbasis.

What if one represented the operator Ŷ in a different basis? E.g., used the
eigenstates of the Hamiltonian operator as the basis? Would Ŷ be diagonal
in that basis?
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2. Consider a system of two spin-1/2 objects. (E.g., the spins of two ions
trapped next to each other, or the electron and proton in a hydrogen atom,
where we ignore spatial motion and concentrate on their spins.) The Hilbert
space is 4-dimensional and is spanned by the basis

|↑↑〉 |↑↓〉 |↓↑〉 |↓↓〉

with the obvious meanings: e.g., |↑↓〉 represents the state where the first
spin has z-component up (+~/2) and the second spin has z-component
down (−~/2).

Using these four states as the basis set, a general state can be written as

|ψ 〉 = α |↑↑〉 + β |↑↓〉 + γ |↓↑〉 + δ |↓↓〉 =


α
β
γ
δ


(a) In the state |ψ 〉, what is the probability of finding the first spin to

have z-component up?

Hints / Solution / Discussion →
Of the four basis states, the first two have z-up for the first spin.
Therefore the probability of finding the first spin to have z-component
up is the sum of the probabilities of |↑↑〉 and |↑↓〉:

|α|2 + |β|2

(b) What is the probability of finding the second spin to have z-component
down?

Hints / Solution / Discussion →
Same logic as above: |β|2 + |δ|2

(c) In a simultaneous measurement of the z-components of both the spins,
one finds the first spin to be spin-up, and the second to be spin-down.
What is the state of the system immediately after the measurement?

Hints / Solution / Discussion →
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The measurement has given results corresponding uniquely to the
second basis state. Hence, after the measurement the system will be
projected onto this state. If the measurement is done at time t = t0,
then ∣∣ψ(t = t0 + 0+)〉 = |↑↓〉

(d) Imagine instead a measurement of only the second spin. The result
is found to be spin-up. What is the state of the system immediately
after the measurement?

Hints / Solution / Discussion →
Trickier. The second spin is up in both the first and third basis states,
|↑↑〉 and |↓↑〉. Hence the measurement will project the state of the
system onto a linear combination of these two states:

|ψ 〉 projection−−−−−−−→ α |↑↑〉 + γ |↓↑〉

I’ve used the same coefficients for the two basis states (α and γ) as
they had in the original state. A measurement on the second spin
should not affect the relative weights of these two states, since they
differ only through the value of the first spin.

However, the state written down above is not normalized. Normaliz-
ing, one gets

α

|α|2 + |γ|2
|↑↑〉 +

γ

|α|2 + |γ|2
|↓↑〉
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3. (a) Consider the operator Â =
d

dx
. Which of the following functions are

eigenfunctions of Â? (Show your calculation/argument.)

f1(x) = eikx f2(x) = ax f3(x) = cos(kx) f4(x) = e−ax
2

Here k and a are real constants. For those functions that are
eigenfunctions, give the eigenvalue.

Hints / Solution / Discussion →
A function f(x) will be an eigenfunction of the operator Â if

Âf(x) = (a number)× f(x)

To find out if a function is an eigenfunction, apply the operator on
it and see if you get back a number times the same function. If yes,
then this number is the corresponding eigenvalue. Let’s try the four
functions, one by one.

Âf1(x) =
d

dx

[
eikx
]

= ikeikx = ikf1(x)

{
Yes. The

eigenvalue is ik.

Âf2(x) =
d

dx

[
ax
]

= a No.

Âf3(x) =
d

dx

[
cos(kx)

]
= − sin(kx) No.

Âf4(x) =
d

dx

[
e−ax

2]
= − 2axe−ax

2

No. the factor (−2ax) multiplying f4(x) = e−ax
2

on the right is not
just a number, it is itself a function of x.

(b) Consider the operator B̂ =
d2

dx2
. Which of the above functions are

eigenfunctions of B̂? For those functions that are eigenfunctions, give
the eigenvalue.

Hints / Solution / Discussion →
Follow same procedure. You should find f1 and f3 to be eigenfunctions,
and f4 to be not an eigenfunction. The case of f2 is a bit trickier.
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B̂f1(x) =
d2

dx2
[
eikx
]

= −k2eikx = −k2f1(x)

{
Yes. The

eigenvalue is −k2.

B̂f2(x) =
d2

dx2
[
ax
]

= 0 = 0
[
ax
]

= 0f2(x)

Yes; an eigenfunction with eigenvalue zero. But admittedly confusing,
since you might not immediately think of 0 as being 0 times the
particular function f2(x).

B̂f3(x) =
d2

dx2
[

cos(kx)
]

= −k2 cos(kx) = −k2f3(x)

{
Yes. The

eigenvalue is −k2.

B̂f4(x) =
d2

dx2
[
e−ax

2]
=

d

dx

(
−2axe−ax

2
)

=
(
4a2x2 − 2ax

)
e−ax

2

No. the factor (4a2x2 − 2ax) multiplying f4(x) = e−ax
2

on the right is
not just a number, it is itself a function of x.
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4. The quantum harmonic oscillator.

We denote the orthonormalized energy eigenstates of the harmonic oscilla-
tor by |n〉, on which the creation/annihilation operators act as follows:

â |n〉 =
√
n |n− 1〉 â† |n〉 =

√
n+ 1 |n+ 1〉

(a) Express x̂2 in terms of â and â†. Hence show that the uncertainty of
the position in the state |n〉 is

∆x = σ

√
n+

1

2

Hints / Solution / Discussion →
Remembering x̂ =

σ√
2

(â† + â), we obtain

x̂2 =
σ2

2

(
â† + â

) (
â† + â

)
=

σ2

2

(
â†â† + â†â+ ââ† + ââ

)
(1)

CAUTION!! Since â and â† do not commute, â†â 6= ââ†. The ordering
of operators matter! Thus

â†â+ ââ† 6= 2â†â !!!!!!

Instead, you could convince yourself that

â†â+ ââ† = 2â†â+ 1

where 1 stands for the operator 1̂. You can use this to simplify, or
simply continue with Eq. (1), as we do below.

To evaluate the uncertainty ∆x =
√
〈x̂2〉 − 〈x̂〉2 in the state |n〉,

we need to calculate 〈x̂〉 = 〈n| x̂ |n〉 and 〈x̂2〉 = 〈n| x̂2 |n〉. We
first calculate the expectation values of the required ladder operator
combinations:

〈n| â |n〉 =
√
n〈n
∣∣n− 1〉 = 0 〈n| â† |n〉 =

√
n+ 1〈n

∣∣n+ 1〉 = 0

Note we are using the orthonormality of the eigenstates, 〈m
∣∣n+ 1〉 =

δmn. Extending this calculation, one sees that â†â† and ââ have zero
expectation value, but â†â and ââ† give nonzero contributions.

〈n| ââ |n〉 =
√
n〈n| â |n− 1〉 =

√
n
√
n− 1〈n

∣∣n− 2〉 = 0

Similarly, 〈n| â†â† |n〉 =
√
n+ 1

√
n+ 2〈n

∣∣n+ 2〉 = 0

〈n| â†â |n〉 =
√
n〈n| â† |n− 1〉 =

√
n
√
n〈n
∣∣n〉 = n× 1 = n

〈n| ââ† |n〉 =
√
n+ 1〈n| â |n+ 1〉 =

√
n+ 1

√
n+ 1〈n

∣∣n〉 = n+ 1
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Employing these, we obtain

〈x̂〉 =
σ√
2

(
〈â†〉+ 〈â〉

)
= 0

〈x̂2〉 =
σ2

2

(
〈â†â†〉+ 〈â†â〉+ 〈ââ〉† + 〈ââ〉

)
=

σ2

2
[0 + n+ (n+ 1) + 0]

=⇒ 〈x̂2〉 = σ2

(
n+

1

2

)
Thus the unceratinty is

∆x =
√
〈x̂2〉 − 〈x̂〉2 = σ

√
n+

1

2

(b) Express p̂2 in terms of â and â†. Hence calculate the uncertainty of
the momentum, ∆p, in the state |n〉.

Hints / Solution / Discussion →

Using p̂ =
i√
2

~
σ

(â† − â), we obtain

p̂2 = − ~2

2σ2

(
â† − â

) (
â† − â

)
= − ~2

2σ2

(
â†â† − â†â− ââ† + ââ

)
The rest of the calculation is very similar to the one above.

The result is

∆p =
~
σ

√
n+

1

2

Note that this is dimensionally correct, because ~ has the dimensions[
~
]

=
[
position

]
×
[
momentum

]
=
[
energy

]
×
[
time

]
This might be worth remembering, so I put it in a box. (~ is the
fundamental constant of quantum mechanics, so you might want to
know what type of quantity it is, i.e., what it’s dimensions are.) I
remember these two ways of expressing the dimensions of ~, because
I remember the uncertainty relations

∆x∆p ∼ ~/2 , ∆E∆t ∼ ~/2 .
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(c) Find the uncertainty product ∆x∆p in the state |n〉. Also express
this quantity as a function of the eigenenergy En.

Hints / Solution / Discussion →
Multiplying the expressions for the two uncertainties:

∆x∆p = ~
(
n+

1

2

)
=

En
ω

(d) If the system wavefunction at time t = 0 is

|ψ(0)〉 =

√
3

2
|2〉 − i

2
|3〉

then what is the wavefunction at a later time t = T? Your answer
should contain the oscillator frequency ω.

Hints / Solution / Discussion →
The two eigenstates appearing in the wavefunction correspond to
eigenenergies

ε2 =
5

2
~ω ; ε3 =

7

2
~ω .

Hence the wavefunction at time t = T is

|ψ(T )〉 =

√
3

2
|2〉e−iε2T/~ − i

2
|3〉e−iε3T/~

=

√
3

2
|2〉e−i5ωT/2 − i

2
|3〉e−i7ωT/2

(e) Given that the initial system wavefunction is

|ψ(0)〉 =

√
3

2
|2〉 − i

2
|3〉,

calculate the expectation value of position in the state |ψ(t)〉 as a
function of time. Sketch a plot of 〈ψ(t)| x̂ |ψ(t)〉 against time.

Hints / Solution / Discussion →
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The state at time t is

|ψ(t)〉 =

√
3

2
|2〉e−i5ωt/2 − i

2
|3〉e−i7ωt/2

Therefore

〈x̂〉 = 〈ψ(t)| x̂ |ψ(t)〉

=

(√
3

2
〈2| e+i5ωt/2 − (−i)

2
〈3| e+i7ωt/2

)
x̂

(√
3

2
|2〉e−i5ωt/2 − i

2
|3〉e−i7ωt/2

)
with

x̂ =
σ√
2

(
â+ â†

)
.

In the expression for 〈x̂〉 we have the following eight matrix elements
appearing:

〈2| â |2〉 〈2| â |3〉 〈3| â |2〉 〈3| â |3〉
〈2| â† |2〉 〈2| â† |3〉 〈3| â† |2〉 〈3| â† |3〉

Of these, only the following two are nonzero:

〈2| â |3〉 =
√

3〈2
∣∣2〉 =

√
3 , 〈3| â† |2〉 =

√
3〈3
∣∣3〉 =

√
3 ,

while the other matrix elements are all zero.

Please make sure you can figure out why the other matrix elements are
zero. Remember that 〈m

∣∣n〉 = δmn. This means that 〈m| â |n〉 can be
nonzero only if n = m−1, and 〈m| â† |n〉 can be nonzero only if n = m+1.

Thus

〈x̂〉 =
σ√
2

([√
3

2

]
e+i5ωt/2〈2| â |3〉

[
− i

2

]
e−i7ωt/2

+

[
+
i

2

]
e+i7ωt/2〈3| â† |2〉

√
3

2
e−i5ωt/2

)
=

σ√
2

3i

4

(
−e−iωt + eiωt

)
=

σ√
2

3i

4
× 2i sin(ωt)

= − 3σ

2
√

2
sin(ωt)

The required plot of 〈x̂〉 versus time is a plot of the negative sine
function.
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5. (a) Show that for any three operators Â, B̂, and Ĉ,

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂

Hints / Solution / Discussion →

right side = Â
(
B̂Ĉ − ĈB̂

)
+
(
ÂĈ − ĈÂ

)
B̂

= ÂB̂Ĉ − ÂĈB̂ + ÂĈB̂ − ĈÂB̂ = ÂB̂Ĉ − ĈÂB̂

=
(
ÂB̂
)
Ĉ − Ĉ

(
ÂB̂
)

= [ÂB̂, Ĉ] = left side

(b) Use the relation [x̂, p̂] = i~ and the result above to prove by
mathematical induction the identity

[x̂n, p̂] = in~x̂n−1

for any positive integer n.

(If unfamiliar, please look up “mathematical induction”, a standard
technique for proving statements for all positive integers n.)

Hints / Solution / Discussion →
Mathematical induction (in the most common form) is a procedure for
proving that a statement is true for all positive integers. It involves
two steps:
(1) demonstrate the statement for n = 1, and
(2) show that if it is true for n = k then it is also true for n = k + 1.
Together, these would prove the statement for all positive integers n.

First step: The statement we want to prove is clearly true for n =
1, since in that case it reduces to the known commutation relation
between x̂ and p̂:

[x̂1, p̂] = i(1)~x̂0 ⇐⇒ [x̂, p̂] = i~1̂ = i~

Second step of mathematical induction:

Assume that the statement is true for n = k, i.e., that

[x̂k, p̂] = in~x̂k−1
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This implies that

[x̂k+1, p̂] = [x̂kx̂, p̂] = x̂k[x̂, p̂] + [x̂k, p̂]x̂ = x̂k(i~1̂) +
(
ik~x̂k−1

)
x̂

= i~x̂k + ik~x̂k = i(k + 1)~x̂k

i.e., that the statement is true also for n = k+ 1 if it is true for n = k.

Hence statement is proved by mathematical induction.

Proof without mathematical induction:

Apply on an arbitrary function:

[x̂n, p̂]f(x) = x̂np̂]f(x)− p̂x̂nf(x)

= xn (−i~∂x) f(x)− (−i~∂x) (xnf(x))

= − i~xnf ′(x) + i~
(
xnf ′(x) + nxn−1f(x)

)
= i~nxn−1f(x) = i~nx̂n−1f(x)

which indicates [x̂n, p̂] = i~nx̂n−1. Here we have used x̂n = xn, which
follows from x̂ = x.


