1. [4 pts.] Show that an operator, when expressed as a matrix in the basis of its own eigenstates, is diagonal.

Hint: Let's make this more specific: let $\left\{\left|w_{n}\right\rangle\right\}$ be the orthonormalized eigenstates of the operator \hat{Y}. Use the set $\left\{\left|w_{n}\right\rangle\right\}$ as basis set and express \hat{Y} as a matrix in this representation. Show that this matrix is diagonal.
2. Consider a system of two spin- $1 / 2$ objects. (E.g., the spins of two ions trapped next to each other, or the electron and proton in a hydrogen atom, where we ignore spatial motion and concentrate on their spins.) The Hilbert space is 4 -dimensional and is spanned by the basis

$$
|\uparrow \uparrow\rangle \quad|\uparrow \downarrow\rangle \quad|\downarrow \uparrow\rangle \quad|\downarrow \downarrow\rangle
$$

with the obvious meanings: e.g., $|\uparrow \downarrow\rangle$ represents the state where the first spin has z-component up $(+\hbar / 2)$ and the second spin has z-component down ($-\hbar / 2$).

Using these four states as the basis set, a general state can be written as

$$
|\psi\rangle=\alpha|\uparrow \uparrow\rangle+\beta|\uparrow \downarrow\rangle+\gamma|\downarrow \uparrow\rangle+\delta|\downarrow \downarrow\rangle=\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma \\
\delta
\end{array}\right)
$$

(a) [$\mathbf{2} \mathbf{~ p t s .}]$ In the state $|\psi\rangle$, what is the probability of finding the first spin to have z-component up?
(b) [2 pts.] What is the probability of finding the second spin to have z-component down?
(c) [2 pts.] In a simultaneous measurement of the z-components of both the spins, one finds the first spin to be spin-up, and the second to be spin-down. What is the state of the system immediately after the measurement?
(d) [2 pts.] Imagine instead a measurement of only the second spin. The result is found to be spin-up. What is the state of the system immediately after the measurement?
3. (a) [4 pts.] Consider the operator $\hat{A}=\frac{d}{d x}$. Which of the following functions are eigenfunctions of \hat{A} ? (Show your calculation/argument.)

$$
f_{1}(x)=e^{i k x} \quad f_{2}(x)=a x \quad f_{3}(x)=\cos (k x) \quad f_{4}(x)=e^{-a x^{2}}
$$

Here k and a are real constants. For those functions that are eigenfunctions, give the eigenvalue.
(b) [5 pts.] Consider the operator $\hat{B}=\frac{d^{2}}{d x^{2}}$. Which of the above functions are eigenfunctions of \hat{B} ? For those functions that are eigenfunctions, give the eigenvalue.
4. The quantum harmonic oscillator.

We denote the orthonormalized energy eigenstates of the harmonic oscillator by $|n\rangle$, on which the creation/annihilation operators act as follows:

$$
\hat{a}|n\rangle=\sqrt{n}|n-1\rangle \quad \hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle
$$

(a) [$\mathbf{7}$ pts.] Express \hat{x}^{2} in terms of \hat{a} and \hat{a}^{\dagger}. Hence show that the uncertainty of the position in the state $|n\rangle$ is

$$
\Delta x=\sigma \sqrt{n+\frac{1}{2}}
$$

(b) [7 pts.] Express \hat{p}^{2} in terms of \hat{a} and \hat{a}^{\dagger}. Hence calculate the uncertainty of the momentum, Δp, in the state $|n\rangle$.
(c) [3 pts.] Find the uncertainty product $\Delta x \Delta p$ in the state $|n\rangle$. Also express this quantity as a function of the eigenenergy E_{n}.
(d) [4 pts.] If the system wavefunction at time $t=0$ is

$$
|\psi(0)\rangle=\frac{\sqrt{3}}{2}|2\rangle-\frac{i}{2}|3\rangle
$$

then what is the wavefunction at a later time $t=T$? Your answer should contain the oscillator frequency ω.
(e) [8 pts.] Given that the initial system wavefunction is

$$
|\psi(0)\rangle=\frac{\sqrt{3}}{2}|2\rangle-\frac{i}{2}|3\rangle,
$$

calculate the expectation value of position in the state $|\psi(t)\rangle$ as a function of time. Sketch a plot of $\langle\psi(t)| \hat{x}|\psi(t)\rangle$ against time.
5. (a) $[\mathbf{S E L F}]$ Show that for any three operators \hat{A}, \hat{B}, and \hat{C},

$$
[\hat{A} \hat{B}, \hat{C}]=\hat{A}[\hat{B}, \hat{C}]+[\hat{A}, \hat{C}] \hat{B}
$$

(b) [SELF] Use the relation $[\hat{x}, \hat{p}]=i \hbar$ and the result above to prove by mathematical induction the identity

$$
\left[\hat{x}^{n}, \hat{p}\right]=i n \hbar \hat{x}^{n-1}
$$

for any positive integer n.
(If unfamiliar, please look up "mathematical induction", a standard technique for proving statements for all positive integers n.)

