1. The set $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle,\left|\phi_{3}\right\rangle,\left|\phi_{4}\right\rangle\right\}$ is an orthonormal basis set for a 4 -dimensional Hilbert space. The states $|W\rangle,|\psi\rangle,|\theta\rangle$ are defined as

$$
\begin{gathered}
|W\rangle=\alpha\left|\phi_{1}\right\rangle+i \alpha\left|\phi_{2}\right\rangle-\alpha\left|\phi_{3}\right\rangle+\alpha\left|\phi_{4}\right\rangle, \\
|\psi\rangle=\frac{i}{2}\left|\phi_{1}\right\rangle-\frac{\sqrt{3}}{2}\left|\phi_{3}\right\rangle, \quad|\theta\rangle=\frac{1}{\sqrt{3}}\left|\phi_{1}\right\rangle-\frac{i}{\sqrt{3}}\left|\phi_{2}\right\rangle+\frac{i}{\sqrt{3}}\left|\phi_{4}\right\rangle .
\end{gathered}
$$

(a) What does 'orthonormal' mean, in terms of the inner product between $\left|\phi_{i}\right\rangle$ and $\left|\phi_{j}\right\rangle$? (You can use an equation or explain in words.)
[5 marks]
(b) Find the constant α such that $|W\rangle$ is normalized.
[6 marks]
(c) Calculate the inner product $\langle\psi \mid \theta\rangle$.
[6 marks]
(d) Using the representation

$$
\left|\phi_{1}\right\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\left|\phi_{2}\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\left|\phi_{3}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\left|\phi_{4}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

express $|\psi\rangle$ and $|\theta\rangle$ as column vectors. Also write down $\langle\psi|$ and $\langle\theta|$ as row vectors.
[6 marks]
(e) Using the same representation, express the operator $\hat{A}=|\psi\rangle\langle\theta|$ as a matrix. Determine whether or not \hat{A} is hermitian.
[12 marks]
(f) Calculate the expectation value of $\hat{B}=\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|$ in the state $|\psi\rangle$.
[15 marks]
2. (a) Prove that, if $\left|w_{1}\right\rangle$ and $\left|w_{2}\right\rangle$ are eigenstates of a hermitian operator corresponding to distinct eigenvalues, then they are orthogonal to each other.
[12 marks]
(b) The functions $\phi_{1}(x)$ and $\phi_{2}(x)$ are found to be solutions of the time-independent Schroedinger equation, $\hat{H} \psi(x)=E \psi(x)$. The corresponding energies are E_{1} and E_{2} respectively. Show that

$$
f(x, t)=A_{1} \phi_{1}(x) e^{-i E_{1} t / \hbar}+A_{2} \phi_{2}(x) e^{-i E_{2} t / \hbar}
$$

is a solution of the corresponding time-dependent Schroedinger equation.
[18 marks]
(c) Write down the time-independent Schroedinger equation for a particle of mass m confined to the x-axis, but not subject to any potential. (A free particle in one dimension.) Show that the function

$$
\phi(x)=A \sin (k x)
$$

is a solution of this equation. Highlight the relationship between the constant k and the energy of the particle.
[12 marks]
(d) For a single particle in a one-dimensional harmonic oscillator potential, $V(x)=\frac{1}{2} m \omega^{2} x^{2}$, what are the energy eigenvalues of the timeindependent Schroedinger equation? Sketch plots of the four lowestenergy eigenstates as functions of position.
\qquad *

SAMPLE SOLUTIONS

\qquad

1. Question 1.

The set $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle,\left|\phi_{3}\right\rangle,\left|\phi_{4}\right\rangle\right\}$ is an orthonormal basis set for a 4-dimensional Hilbert space. The states $|W\rangle,|\psi\rangle,|\theta\rangle$ are defined as

$$
\begin{gathered}
|W\rangle=\alpha\left|\phi_{1}\right\rangle+i \alpha\left|\phi_{2}\right\rangle-\alpha\left|\phi_{3}\right\rangle+\alpha\left|\phi_{4}\right\rangle, \\
|\psi\rangle=\frac{i}{2}\left|\phi_{1}\right\rangle-\frac{\sqrt{3}}{2}\left|\phi_{3}\right\rangle, \quad|\theta\rangle=\frac{1}{\sqrt{3}}\left|\phi_{1}\right\rangle-\frac{i}{\sqrt{3}}\left|\phi_{2}\right\rangle+\frac{i}{\sqrt{3}}\left|\phi_{4}\right\rangle .
\end{gathered}
$$

(a) What does 'orthonormal' mean, in terms of the inner product between $\left|\phi_{i}\right\rangle$ and $\left|\phi_{j}\right\rangle$? (You can use an equation or explain in words.)

[Sample Answser:]

$$
\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\delta_{i j}
$$

In words: the states $\left|\phi_{i}\right\rangle$ are each normalized and are orthogonal to each other.

$$
\text { -=-=-=-= * }=\text {-=-=-=- }
$$

(b) Find the constant α such that $|W\rangle$ is normalized.

[Sample Answser:]

$$
\langle W \mid W\rangle=|\alpha|^{2}+|i \alpha|^{2}+|-\alpha|^{2}+|\alpha|^{2}=4|\alpha|^{2}
$$

Thus

$$
\begin{aligned}
|\alpha|^{2}=1 / 4 & \Longrightarrow \quad \alpha=\frac{1}{2} \times \text { arbitrary phase factor } \\
& -=-=-=-=*=-=-=-=-
\end{aligned}
$$

(c) Calculate the inner product $\langle\psi \mid \theta\rangle$.

[Sample Answser:]

$$
\langle\psi|=-\frac{i}{2}\left\langle\phi_{1}\right|-\frac{\sqrt{3}}{2}\left\langle\phi_{3}\right|, \quad|\theta\rangle=\frac{1}{\sqrt{3}}\left|\phi_{1}\right\rangle-\frac{i}{\sqrt{3}}\left|\phi_{2}\right\rangle+\frac{i}{\sqrt{3}}\left|\phi_{4}\right\rangle .
$$

Multiplying, only the term with $\left\langle\phi_{1}\right|\left|\phi_{1}\right\rangle$ gives a contribution; the others vanish by orthogonality. Thus

$$
\begin{aligned}
\langle\psi \mid \theta\rangle & =-\frac{i}{2} \times \frac{1}{\sqrt{3}}=-\frac{i}{2 \sqrt{3}} \\
- & =-=-=-=*=-=-=-=-
\end{aligned}
$$

(d) Using the representation

$$
\left|\phi_{1}\right\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad\left|\phi_{2}\right\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \quad\left|\phi_{3}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad\left|\phi_{4}\right\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

express $|\psi\rangle$ and $|\theta\rangle$ as column vectors. Also write down $\langle\psi|$ and $\langle\theta|$ as row vectors.
[6 marks]

[Sample Answser:]

$$
\left.\begin{array}{c}
|\psi\rangle=\left(\begin{array}{c}
i / 2 \\
0 \\
-\sqrt{3} / 2 \\
0
\end{array}\right), \quad|\theta\rangle=\left(\begin{array}{c}
1 / \sqrt{3} \\
-i / \sqrt{3} \\
0 \\
i / \sqrt{3}
\end{array}\right) \\
\langle\psi|=\left(\begin{array}{llll}
-i / 2 & 0 & -\sqrt{3} / 2 & 0
\end{array}\right), \quad\langle\theta|=\left(\begin{array}{lll}
1 / \sqrt{3} & +i / \sqrt{3} & 0
\end{array}-i / \sqrt{3}\right.
\end{array}\right) .
$$

(e) Using the same representation, express the operator $\hat{A}=|\psi\rangle\langle\theta|$ as a matrix. Determine whether or not \hat{A} is hermitian.
[Sample Answser:]

$$
\begin{aligned}
\hat{A}=|\psi\rangle\langle\theta|= & \left(\begin{array}{c}
i / 2 \\
0 \\
-\sqrt{3} / 2 \\
0
\end{array}\right)\left(\begin{array}{lll}
\frac{1}{\sqrt{3}} & \frac{i}{\sqrt{3}} & 0 \\
& -\frac{i}{\sqrt{3}}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\frac{i}{2 \sqrt{3}} & -\frac{1}{2 \sqrt{3}} & 0 & \frac{+1}{2 \sqrt{3}} \\
0 & 0 & 0 & 0 \\
-\frac{1}{2} & -\frac{i}{2} & 0 & +\frac{i}{2} \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Hermitian? The matrix doesn't have the structure $A_{i j}=A_{j i}^{*}$, for example, $A_{12}=-\frac{1}{2 \sqrt{3}}$ and $A_{21}=0$. Hence not hermitian.
(f) Calculate the expectation value of $\hat{B}=\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|$ in the state $|\psi\rangle$.
[15 marks]

[Sample Answser:]

The operator is

$$
\hat{B}=\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The expectation value is

$$
\begin{gathered}
\langle\psi| \hat{B}|\psi\rangle=\left(\begin{array}{llll}
-i / 2 & 0 & -\sqrt{3} / 2 & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
i / 2 \\
0 \\
-\sqrt{3} / 2 \\
0
\end{array}\right) \\
=\left(\begin{array}{llll}
-i / 2 & 0 & -\sqrt{3} / 2 & 0
\end{array}\right)\left(\begin{array}{c}
i / 2 \\
0 \\
0 \\
0
\end{array}\right)=(-i / 2)(i / 2)=\frac{1}{4} \\
-=-=-=-=*=-=-=-=-
\end{gathered}
$$

2. Question 2.
(a) Prove that, if $\left|w_{1}\right\rangle$ and $\left|w_{2}\right\rangle$ are eigenstates of a hermitian operator corresponding to distinct eigenvalues, then they are orthogonal to each other.
[12 marks]

[Sample Answser:]

Let the operator be \hat{A}, and the corresponding eigenvalues be a_{1} and a_{2} :

$$
\hat{A}\left|w_{1}\right\rangle=a_{1}\left|w_{1}\right\rangle \quad \hat{A}\left|w_{2}\right\rangle=a_{2}\left|w_{2}\right\rangle
$$

Since \hat{A} is hermitian, $\hat{A}=\hat{A}^{\dagger}$. Also, a_{1} and a_{2} are real. So, the first equation gives the dual relation:

$$
\left\langle w_{1}\right| \hat{A}^{\dagger}=a_{1}^{*}\left\langle w_{1}\right| \quad \Longrightarrow \quad\left\langle w_{1}\right| \hat{A}=a_{1}\left\langle w_{1}\right|
$$

Applying $\left\langle w_{1}\right|$ on the second eigenvalue equation:

$$
\left\langle w_{1}\right| \hat{A}\left|w_{2}\right\rangle=\left\langle w_{1}\right| a_{2}\left|w_{2}\right\rangle \quad \Longrightarrow \quad a_{1}\left\langle w_{1} \mid w_{2}\right\rangle=a_{2}\left\langle w_{1} \mid w_{2}\right\rangle
$$

Since $a_{1} \neq a_{2}$, this implies $\left\langle w_{1} \mid w_{2}\right\rangle=0$, i.e., that the two kets are orthogonal to each other.
(b) The functions $\phi_{1}(x)$ and $\phi_{2}(x)$ are found to be solutions of the time-independent Schroedinger equation, $\hat{H} \psi(x)=E \psi(x)$. The corresponding energies are E_{1} and E_{2} respectively. Show that

$$
f(x, t)=A_{1} \phi_{1}(x) e^{-i E_{1} t / \hbar}+A_{2} \phi_{2}(x) e^{-i E_{2} t / \hbar}
$$

is a solution of the corresponding time-dependent Schroedinger equation.
[18 marks]

[Sample Answser:]

It's given that:

$$
\hat{H} \phi_{1}(x)=E_{1} \phi_{1}(x) \quad \hat{H} \phi_{2}(x)=E_{1} \phi_{2}(x)
$$

The corresponding time-dependent Schroedinger equation is

$$
\hat{H} \psi(x, t)=i \hbar \frac{\partial}{\partial t} \psi(x, t)
$$

Trying the solution $\psi(x, t)=f(x, t)$ on both sides of this equation:

$$
\begin{aligned}
\text { left side }=\hat{H} f(x, t) & =\hat{H}\left[A_{1} \phi_{1}(x) e^{-i E_{1} t / \hbar}+A_{2} \phi_{2}(x) e^{-i E_{2} t / \hbar}\right] \\
& =A_{1} E_{1} \phi_{1}(x) e^{-i E_{1} t / \hbar}+A_{2} E_{2} \phi_{2}(x) e^{-i E_{2} t / \hbar}
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { right side }=i \hbar \frac{\partial}{\partial t} f(x, t)=i \hbar \frac{\partial}{\partial t}\left[A_{1} \phi_{1}(x) e^{-i E_{1} t / \hbar}+A_{2} \phi_{2}(x) e^{-i E_{2} t / \hbar}\right] \\
& \begin{array}{r}
=A_{1} \phi_{1}(x)\left(i \hbar \frac{\partial}{\partial t} e^{-i E_{1} t / \hbar}\right)+A_{2} \phi_{2}(x)\left(i \hbar \frac{\partial}{\partial t} e^{-i E_{2} t / \hbar}\right) \\
=A_{1} \phi_{1}(x)\left(i \hbar \frac{-i E_{1}}{\hbar} e^{-i E_{1} t / \hbar}\right)+A_{2} \phi_{2}(x)\left(i \hbar \frac{-i E_{2}}{\hbar} e^{-i E_{2} t / \hbar}\right) \\
=A_{1} E_{1} \phi_{1}(x) e^{-i E_{1} t / \hbar}+A_{2} E_{2} \phi_{2}(x) e^{-i E_{2} t / \hbar} \\
-=-=-=-=*=-=-=-=-
\end{array}
\end{aligned}
$$

(c) Write down the time-independent Schroedinger equation for a particle of mass m confined to the x-axis, but not subject to any potential. (A free particle in one dimension.) Show that the function

$$
\phi(x)=A \sin (k x)
$$

is a solution of this equation. Highlight the relationship between the constant k and the energy of the particle.
[12 marks]

[Sample Answser:]

$$
-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \psi(x)=E \psi(x)
$$

Trying the solution $\psi(x)=\phi(x)=A \sin (k x)$ on this equation:

$$
\begin{gathered}
\text { Left side }=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} A \sin (k x)=A \frac{\hbar^{2} k^{2}}{2 m} \sin (k x) \\
\text { Right side }=E A \sin (k x)
\end{gathered}
$$

The two sides can be equal at all x, if

$$
E=\frac{\hbar^{2} k^{2}}{2 m}
$$

Thus $A \sin (k x)$ is a solution, if $E=\hbar^{2} k^{2} / 2 m$.

$$
-=-=-=-=*=-=-=-=-
$$

(d) For a single particle in a one-dimensional harmonic oscillator potential, $V(x)=\frac{1}{2} m \omega^{2} x^{2}$, what are the energy eigenvalues of the timeindependent Schroedinger equation? Sketch plots of the four lowestenergy eigenstates as functions of position.

[Sample Answser:]

$$
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega
$$

The plots should clearly have zero, one, two, three nodes.

$$
-=-=-=-=*=-=-=-=
$$

