1. Consider a particle of mass m on an infinite one-dimensional line.
(a) Write down the operators for momentum and for kinetic energy.
(b) Find out if the functions $e^{i k x}$ and $\cos (k x)$ are eigenfunctions of the momentum operator. If so, find the corresponding eigenvalues.
[6 marks]
(c) Find out if the functions $e^{i k x}$ and $\cos (k x)$ are eigenfunctions of the kinetic energy operator. If so, find the corresponding eigenvalues.
[8 marks]
(d) Find the commutator $[\hat{x}, \hat{p}]$ between the position and momentum operators.
[10 marks]
(e) Consider a normalized wavefunction $\psi_{0}(x)$. The expectation value of momentum in this state is p_{0}. Find the expectation value of momentum in the state

$$
\psi_{\text {new }}(x)=e^{i q x / \hbar} \psi_{0}(x)
$$

Based on your result, explain the physical significance of multiplying a wavefunction by the phase factor $e^{i q x / \hbar}$.
[12 marks]
(f) If $f(x)$ and $g(x)$ are eigenfunctions of a hermitian operator \hat{A} corresponding to different eigenvalues, find out whether any linear combination $C_{1} f(x)+C_{2} g(x)$ is also an eigenfunction of \hat{A}.
[10 marks]
2. Consider a spin- $1 / 2$ system. The components of the spin are described by the operators

$$
\hat{S}_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \hat{S}_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \hat{S}_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(a) Consider the state $|\phi\rangle=\binom{\alpha}{-\alpha}$.

Given that the state is normalized, determine the most general expression for α.
(b) Calculate the expectation value of S_{z} in the state $|\phi\rangle$.
[9 marks]
(c) Calculate the uncertainty of S_{z} in the state $|\phi\rangle$.
[12 marks]
(d) What are the possible values that can be obtained in a measurement of S_{y} ? Derive the possible values using the matrix \hat{S}_{y}.
[10 marks]
(e) A measurement of S_{y} yields a negative value. What is the state of the system immediately after the measurement?
[12 marks]
\qquad
*

SAMPLE SOLUTIONS

\qquad * \qquad

1. Question 1.

Consider a particle of mass m on an infinite one-dimensional line.
(a) Question 1(a)

Write down the operators for momentum and for kinetic energy.
[4 marks]
[Sample Answser:]

$$
\hat{p}=-i \hbar \frac{\partial}{\partial x}=-i \hbar \partial_{x} \quad \hat{T}=\frac{\hat{p}^{2}}{2 m}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}=-\frac{\hbar^{2}}{2 m} \partial_{x}^{2}
$$

$$
-=-=-=-=*=-=-=-=-
$$

(b) Question 1(b)

Find out if the functions $e^{i k x}$ and $\cos (k x)$ are eigenfunctions of the momentum operator. If so, find the corresponding eigenvalues.
[6 marks]

[Sample Answser:]

$e^{i k x}$ an eigenfunction??

$$
\begin{aligned}
\hat{p} e^{i k x}=-i \hbar \partial_{x} e^{i k x} & =-i \hbar(i k) e^{i k x}=\hbar k e^{i k x} \\
& \Longrightarrow \text { Yes, eigenfunction, with eigenvalue } \hbar k
\end{aligned}
$$

$\cos (k x)$ an eigenfunction??

$$
\hat{p} \cos (k x)=-i \hbar \partial_{x} \cos (k x)=-i \hbar(-k) \sin (k x)=i \hbar k \sin (k x)
$$

$$
\Longrightarrow \text { Not an eigenfunction. }
$$

(c) Question 1(c)

Find out if the functions $e^{i k x}$ and $\cos (k x)$ are eigenfunctions of the kinetic energy operator. If so, find the corresponding eigenvalues.
[8 marks]
[Sample Answser:]
$e^{i k x}$ an eigenfunction??

$$
\begin{aligned}
\hat{T}^{i k x}=-\frac{\hbar^{2}}{2 m} \partial_{x}^{2} e^{i k x} & =-\frac{\hbar^{2}}{2 m}(i k)^{2} e^{i k x}=\frac{\hbar^{2} k^{2}}{2 m} e^{i k x} \\
& \Longrightarrow \text { Yes, eigenfunction, with eigenvalue } \frac{\hbar^{2} k^{2}}{2 m}
\end{aligned}
$$

$\cos (k x)$ an eigenfunction??

$$
\begin{aligned}
\hat{T} \cos (k x)= & -\frac{\hbar^{2}}{2 m} \partial_{x}^{2} \cos (k x)=-\frac{\hbar^{2}}{2 m}(-k) \partial_{x} \sin (k x) \\
= & -\frac{\hbar^{2}}{2 m}(-k)(k) \cos (k x)=\frac{\hbar^{2} k^{2}}{2 m} \cos (k x) \\
& \Longrightarrow \text { Yes, eigenfunction, with eigenvalue } \frac{\hbar^{2} k^{2}}{2 m} .
\end{aligned}
$$

-=-=-=-= * =-=-=-=-
(d) Question 1(d)

Find the commutator $[\hat{x}, \hat{p}]$ between the position and momentum operators.

[Sample Answser:]

Applying the operator $[\hat{x}, \hat{p}]$ on an arbitrary (wave)function $f(x)$, we obtain

$$
\begin{aligned}
& {[\hat{x}, \hat{p}] f(x)=(\hat{x} \hat{p}-\hat{p} \hat{x}) f(x)=\hat{x} \hat{p} f(x)-\hat{p} \hat{x} f(x)} \\
& =x\left(-i \hbar \frac{d}{d x}\right) f(x)-\left(-i \hbar \frac{d}{d x}\right) x f(x)=-i \hbar x f^{\prime}(x)+i \hbar \frac{d}{d x}[x f(x)] \\
& =-i \hbar x f^{\prime}(x)+i \hbar\left[f(x)+x f^{\prime}(x)\right]
\end{aligned}
$$

Thus

$$
[\hat{x}, \hat{p}] f(x)=i \hbar f(x) \quad \Longrightarrow \quad[\hat{x}, \hat{p}]=i \hbar
$$

i.e., operating with $[\hat{x}, \hat{p}]$ on a function involves multiplying the function by the constant $i \hbar$.
(To look more consistent, one could have operators on both sides of the equation; sometimes this is written as

$$
[\hat{x}, \hat{p}]=i \hbar \hat{1}
$$

where $\hat{1}$ is the unit operator which leaves a function unchanged.)

(e) Question 1(e)

Consider a normalized wavefunction $\psi_{0}(x)$. The expectation value of momentum in this state is p_{0}. Find the expectation value of momentum in the state

$$
\psi_{\text {new }}(x)=e^{i q x / \hbar} \psi_{0}(x)
$$

Based on your result, explain the physical significance of multiplying a wavefunction by the phase factor $e^{i q x / \hbar}$.
[12 marks]

[Sample Answser:]

We are given

$$
\langle\hat{p}\rangle_{\psi_{0}}=\left\langle\psi_{0}\right| \hat{p}\left|\psi_{0}\right\rangle=p_{0}
$$

We want to find the expectation value in the state $\psi_{\text {new }}(x)$:

$$
\begin{aligned}
\langle\hat{p}\rangle_{\psi_{\text {new }}}=\left\langle\psi_{\text {new }}\right| \hat{p}\left|\psi_{\text {new }}\right\rangle= & \int_{-\infty}^{\infty} \psi_{\text {new }}(x)^{*} \hat{p} \psi_{\text {new }}(x) d x \\
& =-i \hbar \int_{-\infty}^{\infty} \psi_{\text {new }}(x)^{*} \frac{d}{d x} \psi_{\text {new }}(x) d x
\end{aligned}
$$

Now

$$
\frac{d}{d x} \psi_{\text {new }}(x)=\frac{d}{d x}\left[e^{i q x / \hbar} \psi_{0}(x)\right]=\frac{i q}{\hbar} e^{i q x / \hbar} \psi_{0}(x)+e^{i q x / \hbar} \frac{d}{d x} \psi_{0}(x)
$$

so that

$$
\begin{aligned}
& \psi_{\text {new }}(x)^{*} \frac{d}{d x} \psi_{\text {new }}(x) \\
& =\left[e^{-i q x / \hbar} \psi_{0}(x)^{*}\right]\left(\frac{i q}{\hbar} e^{i q x / \hbar} \psi_{0}(x)+e^{i q x / \hbar} \frac{d}{d x} \psi_{0}(x)\right) \\
& \\
& =\frac{i q}{\hbar}\left|\psi_{0}(x)\right|^{2}+\psi_{0}(x)^{*} \frac{d}{d x} \psi_{0}(x)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\langle\hat{p}\rangle_{\psi_{\text {new }}} & =-i \hbar \frac{i q}{\hbar} \int_{-\infty}^{\infty}\left|\psi_{0}(x)\right|^{2} d x-i \hbar \int_{-\infty}^{\infty} \psi_{0}(x)^{*} \frac{d}{d x} \psi_{0}(x) d x \\
& =q+\int_{-\infty}^{\infty} \psi_{0}(x)^{*} \hat{p} \psi_{0}(x) d x=q+\langle\hat{p}\rangle_{\psi_{0}}=q+p_{0}
\end{aligned}
$$

Multiplying by this phase factor $e^{i q x / \hbar}$ shifts the momentum by the quantity q, i.e., the wavefunction is 'boosted' by momentum q.

(f) Question 1(f)

If $f(x)$ and $g(x)$ are eigenfunctions of an operator \hat{A} corresponding to different eigenvalues, find out whether any linear combination $C_{1} f(x)+C_{2} g(x)$ is also an eigenfunction of \hat{A}.

[Sample Answser:]

We are given

$$
\hat{A} f(x)=a_{1} f(x), \quad \hat{A} g(x)=a_{2} g(x), \quad \text { with } a_{1} \neq a_{2}
$$

Is the linear combination $C_{1} f(x)+C_{2} g(x)$ an eigenfunction? Let's try:

$$
\left.\hat{A}\left[C_{1} f(x)+C_{2} g(x)\right]=C_{1} \hat{A} f(x)\right)+C_{2} \hat{A} g(x)=C_{1} a_{1} f(x)+C_{2} a_{2} g(x)
$$

which is not a constant multiple of $C_{1} f(x)+C_{2} g(x)$, because $a_{1} \neq a_{2}$. Hence $C_{1} f(x)+C_{2} g(x)$ is NOT an eigenfunction of \hat{A} in general.
2. Question 2.

Consider a spin- $1 / 2$ system. The components of the spin are described by the operators

$$
\hat{S}_{x}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \hat{S}_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \hat{S}_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

(a) Question 2(a)

Consider the state $|\phi\rangle=\binom{\alpha}{-\alpha}$.
Calculate α so that the state is normalized. Keep your answer general: do not assume α to be real.
[7 marks]

[Sample Answser:]

$$
\langle\phi \mid \phi\rangle=\left(\begin{array}{ll}
\alpha^{*} & -\alpha^{*}
\end{array}\right)\binom{\alpha}{-\alpha}=|\alpha|^{2}+|\alpha|^{2}=2|\alpha|^{2}
$$

Normalization means $\langle\phi \mid \phi\rangle=1$; hence

$$
2|\alpha|^{2}=1 \quad \Longrightarrow \quad \alpha=\frac{1}{\sqrt{2}} e^{i \chi}
$$

The phase factor $e^{i \chi}$ is required becuase we can only determine the magnitude from the noramlization condition, if we are not allowed to assume that α is real. Here χ is an arbitrary real number.
(b) Question 2(b)

Calculate the expectation value of S_{z} in the state $|\phi\rangle$.

[Sample Answser:]

$$
\begin{aligned}
\left\langle S_{z}\right\rangle=\langle\phi| S_{z}|\phi\rangle & =\left(\begin{array}{ll}
\alpha^{*} & -\alpha^{*}
\end{array}\right)\left(\begin{array}{cc}
\hbar / 2 & 0 \\
0 & -\hbar / 2
\end{array}\right)\binom{\alpha}{-\alpha} \\
& =\left(\begin{array}{ll}
\alpha^{*} & -\alpha^{*}
\end{array}\right)\binom{\alpha \hbar / 2}{\alpha \hbar / 2}=|\alpha|^{2} \frac{\hbar}{2}-|\alpha|^{2} \frac{\hbar}{2}=0
\end{aligned}
$$

$$
-=-=-=-=*=-=-=-=
$$

(c) Question 2(c)

Calculate the uncertainty of S_{z} in the state $|\phi\rangle$.
[12 marks]

[Sample Answser:]

We need to calculate

$$
\Delta S_{z}=\sqrt{\left\langle S_{z}^{2}\right\rangle-\left\langle S_{z}\right\rangle^{2}}
$$

Note that $S_{z}^{2}=\frac{\hbar}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \frac{\hbar}{2}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\frac{\hbar^{2}}{4}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. Thus
$\left\langle S_{z}^{2}\right\rangle=\left(\begin{array}{ll}\alpha^{*} & -\alpha^{*}\end{array}\right) \frac{\hbar^{2}}{4}\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)\binom{\alpha}{-\alpha}=\frac{\hbar^{2}}{4}\left(\begin{array}{ll}\alpha^{*} & -\alpha^{*}\end{array}\right)\binom{\alpha}{-\alpha}=\frac{\hbar^{2}}{4}$
since the state is normalized.
The uncertainty is therefore

$$
\Delta S_{z}=\sqrt{\left\langle S_{z}^{2}\right\rangle-\left\langle S_{z}\right\rangle^{2}}=\sqrt{\frac{\hbar^{2}}{4}-0^{2}}=\frac{\hbar}{2}
$$

(d) Question 2(d)

What are the possible values that can possibly be obtained in a measurement of S_{y} ?
[10 marks]

[Sample Answser:]

The possible values that can be obtained are the eigenvalues of the operator. Thus we need to find the eigenvalues of

$$
\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Of course, this can be done in couple of different ways. If done correctly, the eigenvalues will be $\pm \hbar / 2$. These are the possible values that can be obtained in a measurement of S_{y}.
A possible calculation: an eigenvalue λ of $\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ must satisfy

$$
\begin{aligned}
& \left|\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)-\lambda I\right|=0 \\
& \Longrightarrow\left|\begin{array}{cc}
-\lambda & -i \\
i & -\lambda
\end{array}\right|=0 \\
& \Longrightarrow \quad \lambda^{2}-1=0 \quad \Longrightarrow \quad \lambda= \pm 1 \\
& \Longrightarrow \text { The eigenvalues of }\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \text { are } \pm 1 \\
& \Longrightarrow \text { The eigenvalues of } \hat{S}_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \text { are } \pm \hbar / 2 \text {. }
\end{aligned}
$$

(e) Question 2(e)

A measurement of S_{y} yields a negative value. What is the state of the system immediately after the measurement?
[12 marks]

[Sample Answser:]

The state is the eigenstate corresponding to the eigenvalue $-\hbar / 2$, since the system will collapse to this eigenstate if the result of a measurement is $-\hbar / 2$. So, this problem involves calculating the eigenstate corresponding to the eigenvalue $-\hbar / 2$.
Calling this eigenstate $\binom{\beta}{\gamma}$, we obtain

$$
\begin{aligned}
\hat{S}_{y}\binom{\beta}{\gamma}=- & \frac{\hbar}{2}\binom{\beta}{\gamma} \\
\Longrightarrow \frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{\beta}{\gamma} & =-\frac{\hbar}{2}\binom{\beta}{\gamma} \\
& \Longrightarrow\binom{-i \gamma}{i \beta}=-\binom{\beta}{\gamma}
\end{aligned}
$$

which gives $\gamma=-i \beta$, so that the eigenstate is

$$
\binom{\beta}{-i \beta}
$$

The value of β can be calculated by normalization:

$$
\beta=\frac{1}{\sqrt{2}} e^{i \chi} ; \quad \chi \text { is a real number }
$$

Thus the state after the measurement is

$$
\frac{1}{\sqrt{2}} e^{i \chi}\binom{1}{-i}
$$

