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1 Probability amplitude versus

Probability density versus

just Probability

Wavefunction components are not probabilities themselves; they are prob-
ability amplitudes. This means, you have to take their absolute square
(modulus square) in order to get something like a probability.

If you take the absolute square, do you get a probability, or a probability
density? This depends on how the underlying Hilbert space is indexed. If it
is a discrete index, you get a probability. If it is a continuous index, you get
a probability density.

There are thus three types of quantities — amplitudes of probability,
probability densities, and discrete probabilities — to get used to. You may
have met probability densities and discrete probabilities in statistics class; I
review these below as well. The concept of probability amplitudes is specific
to quantum mechanics.

2 Probability density vs Probability

We first remind ourselves of the difference between a probability and a
probability density, as you might have learned them in a statistics module.
This section is not really about quantum mechanics, yet.

Imagine a statistical variable (random variable), that can take a discrete
number of values. For example, a throw of a die can result in one of six
results. An index running over these values will be a discrete index. Each of
the results (‘events’) is associated with a probability. For example, we could
write the individual probabilities, in obvious notation, as

P1 = 0.2 P2 = 0.1 P3 = 0.1 P4 = 0.25 P5 = 0.2 P6 = 0.15 .

(Clearly this is not a fair die, as the probabilities are unequal. Biased!)

This listing provides the (discrete) probability distribution. Pi is the
probability of obtaining the outcome i. The probabilities must satisfy∑

i

Pi = 1 .

Now consider a continuous random variable, e.g., the height of a randomly
selected person in the Dublin area, or the y-component of the position of an
object. The value of the height or position is a continuous variable, i.e., we
could not possibly hope to list all possible values. So we can’t hope to write
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a discrete list of probabilities as we did in the discrete case. Instead, the
probability distribution can only be specified as a function

P (y)

that has a continuous argument, or a continuous index. The variable y could
be the height or position in the above examples. It takes a continuum of
values, an infinite number of rational and irrational values, which you cannot
list exhaustively.

So how do you interpret this function P (y)? It would be imprecise to say that
P (y0) it is the probability of the height being exactly y = y0. The probability
of finding exactly a particular value is actually zero. The proper interpretation
is to consider the function P (y) to be a probability density. You can use
this function to obtain probabilities of finding a value within an interval.
For example, if P (y) is the probability density, then the probability of
obtaining a value in the interval y ∈ [a, b] is∫ b

a

P (y)dy.

Informally, you could say that P (y)dy gives you the probability of finding a
value in the interval (y, y + dy). You probably shouldn’t say that in math
class, but it’s perfectly appropriate for physics discussions.

Note: In our discrete example (die) there were only six possible values
of the index. However, the underlying index could be discrete but yet
have an infinite number of possible values.
For example, you could ask what is the probability of finding n stars in
a randomly chosen galaxy. You could try listing the probabilities Pn

P0, P1, P2, P3, . . .

The list is discrete but infinite. It never ends because galaxies could
in principle be arbitrarily large. The index n is discrete, nevertheless
it has an infinite number of possible values. Because n is discrete, you
use discrete probabilities (and not a probability density function)
to describe the probability distribution.

You also know such examples from quantum mechanics: imagine listing
the probabilities of finding a particle in a harmonic oscillator in the
state n = 0, n = 1, n = 2,.... The list is discrete; you have probabilities
instead of a probability density. However the list in infinite.
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3 Probabilities vs Probability densities

in quantum mechanics

In quantum mechanics, the underlying Hilbert space might be finite-dimensional
or infinite-dimensional. If it is finite-dimensional, states will be indexed by a
finite and therefore discrete set. If the Hilbert space in infinite-dimensional,
states might be indexed by either continuous variables or by discrete indices!
Let us give examples of each below.

3.1 Finite Hilbert space – discrete indexing

The example we have looked at repeatedly is a two-state system, namely a
spin-1

2
system. Let us express wavefunctions in the usual basis {|↑〉, |↓〉}.

Then the wavefunction is a two-component vector:

|ψ 〉 =

(
c1
c2

)
with

∑
i

|ci|2 = 1.

The index i is discrete, not continuous. So there are no probability densities
appearing in this system, only probabilities.

In particular, |c1|2 is the probability of finding the z-component of the spin to
be positive (+1/2), and |c2|2 is the probability of finding the z-component of
the spin to be negative (−1/2). The sum of these probabilities is 1, because
these are the only possible values that can appear in a measurement of Sz.

Here is a second example. Imagine an electron on a molecule. The structure
of the molecule is such that there are only 4 orbitals (states) available for the
electron. Let us call these states |A〉, |B 〉, |C 〉, |D 〉. (|A〉 is the state of
the electron if it sits in orbital A.) The wavefunction of the electron can be
expressed as

|ψ 〉 = cA |A〉+ cB |A〉+ cC |C 〉+ cD |D 〉

or as a 4-component vector

|ψ 〉 =


cA
cB
cC
cD


The index is again discrete. (It has to be, as the Hilbert space is finite-
dimensional.) So the interpretation is in terms of probabilities. Probability
densities do not appear. For example |cB|2 is the probability of finding the
electron in orbital B.
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3.2 Infinite Hilbert space – continuous index

Consider a particle on a line. Its wavefunction expressed in position basis
is the complex function ψ(x). This is a function of a continuous variable x.
The index of wavefunction components is continuous. So the interpretation
involves probability densities. The probability density of the position of
the particle is |ψ(x)|2. The probability of finding the particle in the interval
between x = a and x = b is ∫ b

a

dx|ψ(x)|2

Informally, you could also say that |ψ(x)|2dx represents the probability
of finding the particle in the interval (x, x+ dx), or in the interval (x−
1
2
dx, x+ 1

2
dx). Either is fine because dx is understood to be infinitesimal,

so the value of |ψ(x)|2 is assumed to have negligible variance within these
intervals.

Imagine you expressed your wavefunction as a function of momentum, and
wrote it as ψ̃(p). You can obtain ψ̃ by Fourier transforming ψ. As momentum
is a continuous variable, you have another situation with a continuous index.
So the interpretation of wavefunction components is again as a probability
density. The quantity |ψ̃(p)|2dp is the probability of finding the momentum
of the particle to be in the range (p, p+ dp).

3.3 Infinite Hilbert space – discrete index

Let us represent the eigenfunctions of a harmonic oscillator as

|φn 〉 n = 0, 1, 2, 3, . . .

As you know, they have energy En = (n + 1)~ω, where ω is the trapping
frequency of the harmonic oscillator.

These eigenstates form a complete basis. The basis has an infinite number of
elements in it. This is not surprising, because the Hilbert space of a particle
on a continuous line is infinite-dimensional.

As {|φn 〉} is a complete basis, any wavefunction of a single particle on a line
can be expressed in terms of these basis states:

|ψ 〉 = c0 |φ0 〉+ c1 |φ1 〉+ c2 |φ2 〉+ . . . =
∞∑
n=0

cn |φn 〉
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You can also think of this as an infinite-dimensional vector. Although it’s not
possible to write out the entire vector, we can make a start:

|ψ 〉 =



c0
c1
c2
c3
...
...


The index is discrete. So, the interpretation of the components cn is in terms
of discrete probabilities, not probability densities. For example, |c3|2 is the
probability of finding the energy of the particle to be (3 + 1

2
)~ω.

Your particle could be subject to no potential or a completely different
potential. Even if your particle is not subject to a harmonic potential,
you could expand its wavefunction in terms of the eigenstates of a
harmonic oscillator. The essential point is that the harmonic oscillator
eigenstates form a complete basis for the complete Hilbert space of any
particle on a line.

4 Probability amplitudes

There is a Wikipedia page titled ‘Probability amplitude’. It looks quite
accessible.

The phrase probability amplitude is used to describe any wavefunction
component, i.e., a quantity which has to be absolute-squared to obtain a
probability or a probability density. Thus, for one of our discrete cases, cn
would be a probability amplitude, and |cn|2 is a probability. For the continuous
case, ψ(x) is a probability amplitude, while |ψ(x)|2 is a probability density.

I don’t know the origin of the word ‘amplitude’ used in this sense. The
word means other things in other contexts, for example, the amplitude of
a sinusoidal wave is its maximum magnitude. I hope this does not cause too
much confusion.


