Some discussion and/or hints on assignment 06 .
There may be misprints, so use with care.

1. python etc

2. Transition matrix for a Metropolis chain

Consider the 2-site Ising model

$$
H=-J \sigma_{1} \sigma_{2}
$$

where the two classical spins, σ_{1} and σ_{2}, can each take values ± 1.
We are performing Markov chain Monte Carlo on this (admittedly toy) model for inverse temperature β. At every step, one proposes a flip of one of the two spins chosen at random. The state space consists of 4 configurations:

$$
A=(+,+) \quad B=(+,-) \quad C=(-,+) \quad D=(-,-)
$$

where, e.g., $(+,-)$ means $\sigma_{1}=+1$ and $\sigma_{2}=-1$.
(a) Write down the 4×4 transition matrix, also known as the row stochastic matrix or the Markov matrix.
Hint 1: In the Metropolis process, a transition probability is the product of the proposal probability and the acceptance probability. Make sure to work out both, for each pair of states.
Hint 2: Each row should sum to 1.

Discussion/Hint \longrightarrow

Let's first think of proposal probabilities.
If we are state A, then we could propose to flip the first spin (i.e., propose a move to C) or propose to flip the second spin (propose a move to B). So the proposal probabilities for $A \rightarrow B$ and $A \rightarrow C$ are each half, and the proposal probability for $A \rightarrow D$ is zero.

For $A \rightarrow B$, the Metropolis acceptance probability is x . Thus the $A \rightarrow B$ probability is

$$
\text { proposal prob } \times \text { acceptance prob }=(1 / 2) \times x=x / 2 \text {. }
$$

Similarly the $A \rightarrow D$ probability is $x / 2$. The probability of remaining at A is therfore

$$
1-x / 2-x / 2=1-x
$$

So the first row of the stochastic matrix is

$$
1-x \quad x / 2 \quad x / 2 \quad 0 .
$$

I think the second row of the matrix, representing probabilities from B to various states, is

$$
\begin{array}{llll}
1 / 2 & 0 & 0 & 1 / 2
\end{array}
$$

but you will need to double-check.
The other two rows can be obtained using similar logic.
(b) Based on the energies of the 4 configurations, what are the probabilities of these configurations in thermal equilibrium?
You might feel the urge to define $x=e^{-2 \beta J}$.

Discussion/Hint \longrightarrow

In thermal equilibrium, the probability for finding the system in one of the high-energy states (B or C) must be x times the probability of finding the system in one of the low-energy states $(A$ or $D)$. This is because $x=e^{-\beta(d E)}$ where $d E$ is the energy difference between the two types of states.
So the probability vector must be proportional to

$$
\left(\begin{array}{llll}
1 & x & x & 1
\end{array}\right)
$$

I hope this makes sense - please let me know if it doesn't.

This is unnormalized. To interpret the elements as probabilities, their sum would have to be unity. Thus the probability vector is

$$
\frac{1}{2+2 x}\left(\begin{array}{llll}
1 & x & x & 1
\end{array}\right)=\left(\begin{array}{llll}
\frac{1}{2+2 x} & \frac{x}{2+2 x} & \frac{x}{2+2 x} & \frac{1}{2+2 x}
\end{array}\right)
$$

Note that normalization just means that the sum should be 1. (This is unlike normalization in quantum mechanics, where the sum of $\|^{2}$ is 1 , rather than the sum itself.)
(c) Form a row vector combining the probabilities in the stationary (thermal) state.
Check that this is the left eigenvector of your stochastic matrix, corresponding to eigenvalue 1 .

Discussion/Hint \longrightarrow

Note left eigenvector, not normal eigenvector.

$$
=-=-=-=-=-=-=-=-=-=
$$

3. QR method for eigenvalues

The eigenvalues of a matrix can be found by successive $Q R$ decompositions. In an earlier assignment, you showed that if A is QR-decomposed as $A=$ $Q_{1} R_{1}$, then the matrix $A^{(1)}=R_{1} Q_{1}$ has the same eigenvalues as A. We could do this repeatedly: We define $A^{(0)}=A$ and the sequence of matrices $A^{(k)}$ as

$$
\begin{aligned}
A^{(k-1)} & =Q_{k} R_{k} & & \left(\mathrm{QR} \text { decomp of } A^{(k-1)}\right) \\
A^{(k)} & =R_{k} Q_{k} & & (\text { inverting order: next matrix defined })
\end{aligned}
$$

The $A^{(k)}$ each have the same eigenvalues. In addition, they have the property that successive $A^{(k)}$ are more and more diagonally dominant. If A is hermitian, for large k the iteration gives diagonal matrices. (If A is not hermitian, the large- k result might be instead a triangular matrix, which is good enough for obtaining eigenvalues.)
This is known as the QR method for obtaining eigenvalues.
(a)
(b)
(c) In the QR iteration, why do the matrices approach diagonal form?

Discussion/Hint \longrightarrow

I don't have a simple answer to this unfortunately. But watching the off-diagonals vanish is pretty remarkable.

