Some discussion and/or hints on assignment 06.

There may be misprints, so use with care.

1. python etc

2. Transition matrix for a Metropolis chain

Consider the 2-site Ising model

$$H = -J\sigma_1\sigma_2$$

where the two classical spins, σ_1 and σ_2 , can each take values ± 1 .

We are performing Markov chain Monte Carlo on this (admittedly toy) model for inverse temperature β . At every step, one proposes a flip of one of the two spins chosen at random. The state space consists of 4 configurations:

$$A = (+, +)$$
 $B = (+, -)$ $C = (-, +)$ $D = (-, -)$

where, e.g., (+, -) means $\sigma_1 = +1$ and $\sigma_2 = -1$.

(a) Write down the 4×4 transition matrix, also known as the row stochastic matrix or the Markov matrix.

Hint 1: In the Metropolis process, a transition probability is the product of the proposal probability and the acceptance probability. Make sure to work out both, for each pair of states.

Hint 2: Each row should sum to 1.

$Discussion/Hint \rightarrow$

Let's first think of proposal probabilities.

If we are state A, then we could propose to flip the first spin (i.e., propose a move to C) or propose to flip the second spin (propose a move to B). So the proposal probabilities for $A \to B$ and $A \to C$ are each half, and the proposal probability for $A \to D$ is zero.

page 2

For $A \to B$, the Metropolis acceptance probability is x. Thus the $A \to B$ probability is

proposal prob × acceptance prob = $(1/2) \times x = x/2$.

Similarly the $A \to D$ probability is x/2. The probability of remaining at A is therfore

$$1 - x/2 - x/2 = 1 - x.$$

So the first row of the stochastic matrix is

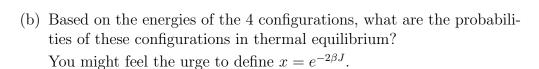
$$1 - x \quad x/2 \quad x/2 \quad 0.$$

I think the second row of the matrix, representing probabilities from B to various states, is

$$1/2$$
 0 0 $1/2$

but you will need to double-check.

The other two rows can be obtained using similar logic.



$Discussion/Hint \rightarrow$

In thermal equilibrium, the probability for finding the system in one of the high-energy states (B or C) must be x times the probability of finding the system in one of the low-energy states (A or D). This is because $x = e^{-\beta(dE)}$ where dE is the energy difference between the two types of states.

So the probability vector must be proportional to

 $(1 \quad x \quad x \quad 1)$

I hope this makes sense — please let me know if it doesn't.

This is unnormalized. To interpret the elements as probabilities, their sum would have to be unity. Thus the probability vector is

$$\frac{1}{2+2x} \begin{pmatrix} 1 & x & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2+2x} & \frac{x}{2+2x} & \frac{x}{2+2x} & \frac{1}{2+2x} \end{pmatrix}$$

Note that normalization just means that the sum should be 1. (This is unlike normalization in quantum mechanics, where the sum of $||^2$ is 1, rather than the sum itself.)

(c) Form a row vector combining the probabilities in the stationary (thermal) state.

Check that this is the left eigenvector of your stochastic matrix, corresponding to eigenvalue 1.

$Discussion/Hint \longrightarrow$

Note left eigenvector, not normal eigenvector.

3. QR method for eigenvalues

The eigenvalues of a matrix can be found by successive QR decompositions. In an earlier assignment, you showed that if A is QR-decomposed as $A = Q_1R_1$, then the matrix $A^{(1)} = R_1Q_1$ has the same eigenvalues as A. We could do this repeatedly: We define $A^{(0)} = A$ and the sequence of matrices $A^{(k)}$ as

 $A^{(k-1)} = Q_k R_k \qquad (\text{QR decomp of } A^{(k-1)})$ $A^{(k)} = R_k Q_k \qquad (\text{inverting order: next matrix defined})$

The $A^{(k)}$ each have the same eigenvalues. In addition, they have the property that successive $A^{(k)}$ are more and more diagonally dominant. If A is hermitian, for large k the iteration gives diagonal matrices. (If A is not hermitian, the large-k result might be instead a triangular matrix, which is good enough for obtaining eigenvalues.)

This is known as the QR method for obtaining eigenvalues.

- (a)
- (b)
- (c) In the QR iteration, why do the matrices approach diagonal form?

$Discussion/Hint \longrightarrow$

I don't have a simple answer to this unfortunately. But watching the off-diagonals vanish is pretty remarkable.
