Due Wednesday November 18th, 2020.

1. The unix/linux command line

(a) Explain what the following commands do. (Hint: look up 'piping'.)
(i) ps -f | grep firef
(ii) grep includegraphics manuscript.tex | wc
(b) You can look at file permissions using "ls -l". You find out that one of your files has permissions
rwxr-xr--
Explain what this means.
(c) What command would I use to change permissions on a file so that only I can read it?

2. Newton's method for finding a minimum

(a) Consider the single-variable function

$$
f(x)=1+x^{4 / 3}
$$

which has a single minimum at $x=0$. Write down the iteration equation for Newton' method.
The iterations do not converge. By sketching the derivative $f^{\prime}(x)$, explain graphically why.
(b) We want to find the location of the minimum of the function of 2 variables

$$
f(x, y)=x^{2}+x y+y^{2}+3 x
$$

using Newton's method. Set up the iteration equations. You will have to invert a 2×2 matrix.
Because the function is quadratic, the iteration should converge in a single step. Starting from any initial point (you can choose), show that the iteration converges in a single step.
(c) I have a multidimensional minimization problem and calculating the inverse of the Hessian $\left(\mathbb{H}^{-1}\right)$ is too hard for me. As a very crude approximation, I replace \mathbb{H}^{-1} by $\lambda \mathbb{I}$, where λ is a small number and \mathbb{I} is the unit matrix. The resulting algorithm is then equivalent to a widely used algorithm. Which one?

3. Statistical Mechanics

Note: Some of the following is worked out in the student projects linked to on the webpage, under "Ising model".
Remember $Z=\sum_{\alpha} e^{-\beta E_{\alpha}}$, where E_{α} is the energy of the configuration α. At thermal equilibrium, each configuration appears with probability $P_{\alpha}=\frac{1}{Z} e^{-\beta E_{\alpha}}$.
(a) Show that the system energy and its square has expectation values

$$
\langle E\rangle=\frac{1}{Z} \frac{\partial Z}{\partial \beta}=\frac{\partial}{\partial \beta} \ln Z \quad \text { and } \quad\left\langle E^{2}\right\rangle=\frac{1}{Z} \frac{\partial^{2} Z}{\partial \beta^{2}}
$$

(b) Hence show that the specific heat

$$
C_{v}=\frac{\partial\langle E\rangle}{\partial T}
$$

can be written as $C_{v}=\beta^{2}\left(\left\langle E^{2}\right\rangle-\langle E\rangle^{2}\right)$. I am probably setting the Boltzmann constant to unity here.
(c) Perform the corresponding derivation for the magnetic susceptibility.

You might have to remember that the configuration energy contains a term $-B M_{\alpha}$, where B is the magnetic field (often written as H) and M_{α} is the total magnetization of configuration α.

