Some discussion and/or hints on assignment 08.
There may be misprints, so use with care.

1. MCMC updates: Heat bath, Glauber, Metropolis.

Consider the one-dimensional ferromagnetic Ising model

$$
H=-\sum_{i} \sigma_{i} \sigma_{i+1}-B \sum_{i} \sigma_{i} .
$$

The L classical spins σ_{i}, arranged linearly, can each take values ± 1. For this problem, we will not care about the boundaries.
While performing Markov chain Monte Carlo, we are considering changing the spin at the site $i=\alpha$. The current values of the neighboring spins are such that $\sigma_{\alpha-1}+\sigma_{\alpha+1}=S_{n}$. $\left(S_{n}\right.$ could be $-2,0$ or +2 .)
Note: you don't have to worry about proposal probabilities in these problems, as you've already decided to consider the site $i=\alpha$ as the flip candidate for this step.
(a) If you are using the heat bath update algorithm, what are the probabilities for choosing the next value of σ_{α} to be +1 or -1 ?
(The heat bath algorithm does not care about the current value of σ_{α}, but the probabilities will depend on the current values of the neighboring spins, through S_{n}.)

Discussion/Hint \longrightarrow

Heat bath algorithm: the current value of σ_{α} does not matter.
If the new value of σ_{α} is 1 , then the energy terms involving this spin is

$$
E_{(+1)}=-1 \cdot \sigma_{\alpha-1}-1 \cdot \sigma_{\alpha+1}-B(1)=-S_{n}-B .
$$

There are other terms in the energy, of course, but they do not involve this spin. Since we are thinking about flipping the $i=\alpha$ spin, those terms are not going to be affected in this step.
If the new value of σ_{α} is -1 , then the energy terms involving this spin is

$$
E_{(-1)}=-(-1) \cdot \sigma_{\alpha-1}-(-1) \cdot \sigma_{\alpha+1}-B(-1)=S_{n}+B .
$$

So the thermal probabilities of the two choices are $\propto e^{-\beta E_{(+)}}$and \propto $e^{-\beta E_{(-)}}$. Including a normalization constant we write the probabilities as

$$
\frac{1}{N} e^{-\beta\left(-S_{n}-B\right)} \quad \text { and } \quad \frac{1}{N} e^{-\beta\left(S_{n}+B\right)}
$$

with $N=e^{\beta\left(S_{n}+B\right)}+e^{-\beta\left(S_{n}+B\right)}$. The normalization constant should ensure that the sum of probabilities is 1 .
Therefore, the probabilities of choosing +1 and -1 as the next value of σ_{α} are

$$
\frac{e^{\beta\left(S_{n}+B\right)}}{e^{\beta\left(S_{n}+B\right)}+e^{-\beta\left(S_{n}+B\right)}} \quad \text { and } \quad \frac{e^{-\beta\left(S_{n}+B\right)}}{e^{\beta\left(S_{n}+B\right)}+e^{-\beta\left(S_{n}+B\right)}}
$$

irrespective of the current value of σ_{α}. Do check that the sum of these probabilities are 1 . They can also be written as

$$
\begin{equation*}
\frac{1}{1+\exp \left[-2 \beta\left(S_{n}+B\right)\right]} \quad \text { and } \quad \frac{1}{1+\exp \left[2 \beta\left(S_{n}+B\right)\right]} \tag{1}
\end{equation*}
$$

(b) If you are using the Glauber update algorithm and the current value is $\sigma_{\alpha}=-1$, what are the probabilities for flipping and for not flipping?

Discussion/Hint \longrightarrow

The Glauber algorithm involves a proposal probability and an acceptance probability. We have already chosen this spin and are considering whether to flip. So only the acceptance probability is relevant. This is given by $1 /\left(1+e^{\beta \Delta H}\right)$.
If we flip from $\sigma_{\alpha}=-1$ to $\sigma_{\alpha}=+1$, the energy changes by

$$
\Delta H=\left(-S_{n}-B\right)-\left(S_{n}+B\right)=-2\left(S_{n}+B\right)
$$

So the probability for flipping to $\sigma_{\alpha}=+1$ is

$$
\frac{1}{1+\exp \left[-2 \beta\left(S_{n}+B\right)\right]}
$$

and the probability for not flipping is

$$
1-\frac{1}{1+\exp \left[-2 \beta\left(S_{n}+B\right)\right]}=\frac{1}{1+\exp \left[2 \beta\left(S_{n}+B\right)\right]} .
$$

Note that the probabilities of ending up with $\sigma_{\alpha}=+1$ or with $\sigma_{\alpha}=-1$ are exactly the same as would be the case if we used the heat bath algorithm.
(c) If you are using the Glauber update algorithm and the current value is $\sigma_{\alpha}=+1$, what are the probabilities for flipping and for not flipping?

Discussion/Hint \longrightarrow

Should be able to do yourself based on previous question. You should obtain exactly the same probabilities for ending up with $\sigma_{\alpha}=+1$ or with $\sigma_{\alpha}=-1$.
(d) If you are using the Metropolis algorithm and the current value is $\sigma_{\alpha}=-1$, what are the probabilities for flipping and for not flipping?
Find the Metropolis acceptance probabilities specifically for the following values of $\left(S_{n}, B\right)$:

$$
(-2,-1.5), \quad(0,-1.5), \quad(+2,-1.5), \quad(-2,+1.5),
$$

Discussion/Hint \longrightarrow

The probability for flipping, i.e., accepting the move $-1 \rightarrow+1$ for the $i=\alpha$ spin, is

$$
\min \left(1, \frac{e^{-\beta E_{(+1)}}}{e^{-\beta E_{(-1)}}}\right)=\min \left(1, \frac{e^{-\beta\left(-S_{n}-B\right)}}{e^{-\beta\left(S_{n}+B\right)}}\right)=\min \left(1, e^{2 \beta\left(S_{n}+B\right)}\right) .
$$

We can't tell whether $e^{2 \beta\left(S_{n}+B\right)}$ is larger or smaller than 1 , unless we know the values of S_{n} and B. But you can of course calculate this for every set of values given for $\left(S_{n}, B\right)$.
The probability of not flipping (rejecting the proposed flip) is

$$
1-\min \left(1, e^{2 \beta\left(S_{n}+B\right)}\right)
$$

$$
=-=-=-=-=-=-=-=-=-=
$$

(e) From your calculations, infer whether the heat bath algorithm is equivalent to the Glauber algorithm or/and to the Metropolis algorithm.
Of course, any equivalence you find is only valid for the Ising model and unlikely to be true for another Stat-Phys Hamiltonian.

Discussion/Hint \longrightarrow

The heat bath algorithm gives the probabilities listed in Eq. (1) for obtaining +1 or -1 in the next step, irrespective of the value in the current step.
The Glauber algorithm chooses +1 or -1 with the same probabilities, if the current value is -1 (shown explicitly) and also if the current value is +1 (left as an exercise). Thus the Glauber and heat bath algorithm happen to be identical for the Ising Hamiltonian.
This is accidentally true for the Ising model; it is not true, e.g., for the Potts model or the XY model.

2. Finite difference approximations for derivatives.

Consider the spatial discretization with distance h between neighboring points.
(a) A symmetric finite difference approximation for the second derivative is

$$
f^{\prime \prime}(x) \approx \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}
$$

Show that the error in this approximation is of order h^{2}. You can do this by Taylor expanding $f(x \pm h)$ around x.

Discussion/Hint \longrightarrow

Let's Taylor exapand:

$$
\begin{aligned}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\frac{h^{3}}{6} f^{\prime \prime \prime}(x)+O\left(h^{4}\right) \\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)-\frac{h^{3}}{6} f^{\prime \prime \prime}(x)+O\left(h^{4}\right)
\end{aligned}
$$

The notation $O\left(h^{4}\right)$ means that the terms dropped involve h to the power 4 or higher. It also means that we do not care to write down or work out the exact coefficients of h^{4}. Hopefully you are familiar with this notation from somewhere. This is sometimes called Big- O notation.
Adding the two expressions and subtracting $2 f(x)$ from the result,

$$
f(x+h)+f(x+h)-2 f(x)=h^{2} f^{\prime \prime}(x)+O\left(h^{4}\right)
$$

You might be tempted to write $2 O\left(h^{4}\right)$. That would defeat the purpose of the O-notation. We have already decided to ignore the coefficients of the dropped terms. It makes no sense to start adding them again.
Dividing by h^{2} gives us

$$
\frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}=f^{\prime \prime}(x)+O\left(h^{2}\right)
$$

In other words, the error of the approximation is of order h^{2}.
(b) The forward difference approximation for the first derivative is

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h} .
$$

Show that the error is linear in h. Show how things improve if you use the centered (symmetric) approximation

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

Discussion/Hint \longrightarrow

Same calculation as before. The centered approximation has error of second order.
When we say that this is a second-order approximation, we mean that the error is of second order.
(c) You are using second-order discretization formulae to numerically solve a 1 -dimensional boundary value problem. The error is $\approx 10^{-3}$ when you use step sizes $h=0.01$ for your discretization. Explain what you expect the error to be when you use step sizes $h=0.002$, i.e., if you increase the number of grid points fivefold.

Discussion/Hint \longrightarrow

If h is decreases fivefold, the error should decrease by a factor of $5^{2}=$ 25 . This is the benefit of using a higher-order approximation.

$$
=-=-=-=-=-=-=-=-=-=
$$

(d) Wikipedia claims that

$$
\frac{2 f(x)-5 f(x+h)+4 f(x+2 h)-f(x+3 h)}{h^{2}}
$$

is a forward difference approximation for the second derivative $f^{\prime \prime}(x)$, of second order. Prove or disprove.

Discussion/Hint \longrightarrow
=-=-=-=-=-=-=-=-=-

