Due Wednesday November 25th, 2020.

## 1. MCMC updates: Heat bath, Glauber, Metropolis.

Consider the one-dimensional ferromagnetic Ising model

$$
H=-\sum_{i} \sigma_{i} \sigma_{i+1}-B \sum_{i} \sigma_{i} .
$$

The $L$ classical spins $\sigma_{i}$, arranged linearly, can each take values $\pm 1$. For this problem, we will not care about the boundaries.
While performing Markov chain Monte Carlo, we are considering changing the spin at the site $i=\alpha$. The current values of the neighboring spins are such that $\sigma_{\alpha-1}+\sigma_{\alpha+1}=S_{n}$. $\left(S_{n}\right.$ could be $-2,0$ or +2 .
Note: you don't have to worry about proposal probabilities in these problems, as you've already decided to consider the site $i=\alpha$ as the flip candidate for this step.
(a) If you are using the heat bath update algorithm, what are the probabilities for choosing the next value of $\sigma_{\alpha}$ to be +1 or -1 ?
(The heat bath algorithm does not care about the current value of $\sigma_{\alpha}$, but the probabilities will depend on the current values of the neighboring spins, through $S_{n}$.)
(b) If you are using the Glauber update algorithm and the current value is $\sigma_{\alpha}=-1$, what are the probabilities for flipping and for not flipping?
(c) If you are using the Glauber update algorithm and the current value is $\sigma_{\alpha}=+1$, what are the probabilities for flipping and for not flipping?
(d) If you are using the Metropolis algorithm and the current value is $\sigma_{\alpha}=-1$, what are the probabilities for flipping and for not flipping? Find the Metropolis acceptance probabilities specifically for the following values of $\left(S_{n}, B\right)$ :

$$
(-2,-1.5), \quad(0,-1.5), \quad(+2,-1.5), \quad(-2,+1.5)
$$

(e) From your calculations, infer whether the heat bath algorithm is equivalent to the Glauber algorithm or/and to the Metropolis algorithm. Of course, any equivalence you find is only valid for the Ising model and unlikely to be true for another Stat-Phys Hamiltonian.

## 2. Finite difference approximations for derivatives.

Consider the spatial discretization with distance $h$ between neighboring points.
(a) A symmetric finite difference approximation for the second derivative is

$$
f^{\prime \prime}(x) \approx \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}
$$

Show that the error in this approximation is of order $h^{2}$. You can do this by Taylor expanding $f(x \pm h)$ around $x$.
(b) The forward difference approximation for the first derivative is

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h} .
$$

Show that the error is linear in $h$. Show how things improve if you use the centered (symmetric) approximation

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h} .
$$

(c) You are using second-order discretization formulae to numerically solve a 1 -dimensional boundary value problem. The error is $\approx 10^{-3}$ when you use step sizes $h=0.01$ for your discretization. Explain what you expect the error to be when you use step sizes $h=0.002$, i.e., if you increase the number of grid points fivefold.
(d) Wikipedia claims that

$$
\frac{2 f(x)-5 f(x+h)+4 f(x+2 h)-f(x+3 h)}{h^{2}}
$$

is a forward difference approximation for the second derivative $f^{\prime \prime}(x)$, of second order. Prove or disprove.

