Due Wednesday December 2nd, 2020.

1. Gram-Schmidt orthogonalization.

A very basic technique, used widely in numerical linear algebra.
(a) \vec{x}_{1}, \vec{x}_{2}, and \vec{x}_{3}, are N-dimensional vectors, with $N \gg 3$. These three vectors form a 3 -dimensional subspace of the full N-dimensional vector space.
Construct an orthonormal basis for 3-dimensional subspace, using the Gram-Schmidt process.
(b) The $Q R$ decomposition of a $N \times N$ matrix A can be done using GramSchmidt process.
Explain how the Q matrix is obtained from the columns of the A matrix. (The R matrix is obtained as a byproduct of this calculation; no need to describe that.)
(c) A is a $N \times N$ matrix and \vec{b} is a $N \times 1$ vector. Construct a 4 -dimensional Krylov subspace using matrix A and vector \vec{b}.
Then construct an orthonormal basis for this subspace using GramSchmidt.

2. Boundary Value Problem

Consider the ordinary differential equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{y}{x^{2}+1}=x^{2}
$$

with the boundary values $y(-2)=1, y(2)=2$, defined on the domain $x \in[-2,2]$.
(a) By dividing the domain into 5 equal pieces, discretize the differential equation and write it as a set of linear equations. Explain very carefully how many variables and how many equations you have.
(b) Write the set of linear equations as a matrix equation.
(c) Generalize to dividing the domain into N equal pieces. Describe the structure of the matrix. (Sparse? Banded? etc.) State/explain very carefully the size of the matrix.
(d) Imagine that the boundary condition on the left has been changed to a Neumann-type condition: $y^{\prime}(-2)=-2$. Explain how you would change your equations, using a second-order forward difference approximation for the first derivative.
(e) It might be less cumbersome to use a first-order approximation for the first derivative. Explain why this is a bad idea.

