MP468C - Computational Physics 2 - Lab 05

1. In assignment 5 you simulated the Ising chain

$$
H=-\sum_{i=1}^{L-1} \sigma_{i} \sigma_{i+1}-B \sum_{i=1}^{L} \sigma_{i}
$$

with open boundaries, i.e., the edge spins $i=1$ and $i=L$ are only connected on one side.

You might have treated these two sites specially in your code.
Now consider the periodic Ising chain

$$
H=-\sum_{i=1}^{L} \sigma_{i} \sigma_{i+1}-B \sum_{i=1}^{L} \sigma_{i}
$$

where the sum now includes a site $L+1$, which is identified with site 1. In other words, sites L and 1 are now connected by Ising coupling. Modify your code to obtain the magnetization (per site) of this system. By using python's mod (\%) operator, you might not have to treat the edge spins separately at all.
For $L=5$ and for $L=20$, check if there is any noticeable difference between the magnetization calculated for the open chain and that calculated for the periodic chain. Use a temperature and a B value of your choice.
2. Let's now consider the two-dimensional ferromagnetic Ising model

$$
H=-\sum_{\langle i j\rangle} \sigma_{i} \sigma_{j}-B \sum_{i} \sigma_{i}
$$

Take the lattice to be square-shaped, with $L_{x} \times L_{y}$ spins in total. The symbol $\langle i j\rangle$ indicates that the sites i and j are 'nearest neighbors'. Note that it is not easy to put explicit limits on the summations. Use periodic boundary conditions.

Write a function that generates a Markov chain, using the Metropolis algorithm.
Hint: first work out on paper what your accept/reject criterion is.
You could first use a 10×10 lattice. Increase this later if you can.
(a) Use your Markov chain first for temperature $T=2$ (i.e., $\beta=1 / 2$) and zero field $B=0$. For these values, plot history curves for the energy and for the magnetization.
(b) Keeping the field at $B=0$, vary temperature. Plot the average magnetization $\langle M\rangle$ as a function of temperature, ranging from $T=4$ down to $T=0.5$.

Plot the susceptibility χ as a function of temperature. If this curve has some interesting feature, zoom onto that temperature regime and calculate χ for a few more points in that regime.
3. Plan a MCMC calculation for calculating the autocorrelation function for the magnetization

$$
R(t)=\left\langle M_{n} M_{n+t}\right\rangle-\left\langle M_{n}\right\rangle\left\langle M_{n+t}\right\rangle
$$

where the subscripts indicate Monte Carlo step number, or Monte Carlo 'time'.

Code your strategy, calculate $R(t)$, and plot it as a function of t.
You might want to first attack the 1D chain, to be able to test in reasonable time.

